The Kato estimate for weighted parabolic operators

Research Term on Real Harmonic Analysis and its Applications to Partial Differential Equations and Geometric Measure Theory ICMAT. Madrid, Spain. May 7 - June 8, 2018

Cristian Rios

University of Calgary

May 16, 2018

The Kato estimate for weighted parabolic operators

Work in progress, in collaboration with

- Pascal Auscher University of Paris-Sud
 - Moritz Egert University of Paris-Sud
 - Kaj Nyström Uppsala University

We consider parabolic operators in $\mathbb{R}^n \times \mathbb{R} = (\mathbb{R}^n)_x \times \mathbb{R}_t = \mathbb{R}^n_x \times \mathbb{R}_t$:

$$\mathcal{L}_{w}u = \partial_{t}u + \mathfrak{L}_{w}u = \partial_{t}u - \frac{1}{w(x)}\operatorname{div}_{x}w(x) \operatorname{A}(x,t) \nabla_{x}u.$$

Where A(x, t) is an $n \times n$ elliptic matrix with complex coefficients in \mathbb{R}^{n+1}_+

 $\kappa |\xi|^2 \leq \operatorname{Re}\left(A(x,t)\,\xi,\overline{\xi}\right), \qquad |A(x,t)\,\xi\cdot\zeta| \leq C |\xi|\,|\zeta|, \qquad \text{for some } \kappa, C > 0,$

and *w* is a weight in the Muckemphout class $A_2(\mathbb{R}^n)$:

$$[w]_{A_2} = \sup_B \left(\frac{1}{|B|}\int_B w\,dx\right)\left(\frac{1}{|B|}\int_B w^{-1}\,dx\right) < \infty,$$

where the sup is taken over all balls *B* in \mathbb{R}^n .

Let $V = H^{1/2}(\mathbb{R}, L^2_w(\mathbb{R}^n)) \cap L^2(\mathbb{R}, H^1_w(\mathbb{R}^n))$ and define the sesquilinear form in V:

$$\mathfrak{a}_{w}(u,v) = \iint_{\mathbb{R}^{n+1}} \mathbb{A}(x,t) \nabla_{x} u(x,t) \cdot \overline{\nabla_{x} v(x,t)} + H_{t} D_{t}^{1/2} u \cdot \overline{D_{t}^{1/2} v} w(x) \, dx \, dt$$

The **parabolic operator** $\mathcal{L}_w = \partial_t + \mathfrak{L}_w$ can be defined as an operator $V \to V^*$ via this **accretive** sesquilinear form.

$$\mathcal{L}_{w}u = f \qquad \Longleftrightarrow \qquad \mathfrak{a}_{w}(u, v) = \langle f, v \rangle_{\mathbf{w}} = \iint_{\mathbb{R}^{n+1}} f(x, t) \,\overline{v(x, t)} \, w(x) \, dx \, dt.$$

• $D_t^{1/2}$ be the half-order derivative

$$D_t^{1/2}v(t) = -\frac{1}{2\sqrt{2\pi}} \int_{\mathbb{R}} \frac{v(t) - v(s)}{|t - s|^{3/2}} ds.$$

• H_t the Hilbert transform with respect to the *t* variable, so that $\partial_t = D_t^{1/2} H_t D_t^{1/2}$;

$$H_{t}D_{t}^{1/2}v(t) = -\frac{1}{2\sqrt{2\pi}}\int_{\mathbb{R}}\frac{\operatorname{sign}(t-s)(v(t)-v(s))}{|t-s|^{3/2}}ds.$$

Let $V = H^{1/2}(\mathbb{R}, L^2_w(\mathbb{R}^n)) \cap L^2(\mathbb{R}, H^1_w(\mathbb{R}^n))$ and define the sesquilinear form in V:

$$\mathfrak{a}_{w}(u,v) = \iint_{\mathbb{R}^{n+1}} \mathbb{A}(x,t) \nabla_{x} u(x,t) \cdot \overline{\nabla_{x} v(x,t)} + H_{t} D_{t}^{1/2} u \cdot \overline{D_{t}^{1/2} v} w(x) \, dx \, dt$$

The **parabolic operator** $\mathcal{L}_w = \partial_t + \mathfrak{L}_w$ can be defined as an operator $V \to V^*$ via this **accretive** sesquilinear form.

$$\mathcal{L}_{w}u = f \qquad \Longleftrightarrow \qquad \mathfrak{a}_{w}(u, v) = \langle f, v \rangle_{\mathbf{w}} = \iint_{\mathbb{R}^{n+1}} f(x, t) \,\overline{v(x, t)} \, w(x) \, dx \, dt.$$

• $D_t^{1/2}$ be the half-order derivative

$$D_{t}^{1/2}v(t) = -\frac{1}{2\sqrt{2\pi}} \int_{\mathbb{R}} \frac{v(t) - v(s)}{|t - s|^{3/2}} ds.$$

• H_t the Hilbert transform with respect to the *t* variable, so that $\partial_t = D_t^{1/2} H_t D_t^{1/2}$;

$$H_{t}D_{t}^{1/2}v(t) = -\frac{1}{2\sqrt{2\pi}}\int_{\mathbb{R}}\frac{\operatorname{sign}\left(t-s\right)\left(v\left(t\right)-v\left(s\right)\right)}{|t-s|^{3/2}}ds.$$

In the past few years there has been a *re-discovery* of a powerful technique to treat parabolic operators as *m*-accretive operators via a (non-local) accretive form.

- 1966 **Kaplan**. Abstract boundary value problems for linear parabolic equations, Ann. Scuola Norm. Sup. Pisa (3).
- 1996 Hofmann and Lewis. *L*² solvability and representation by caloric layer potentials in time-varying domains. Ann. of Math. (2).
- 2016 **Castro**, **Nyström**, and **Sande**. Boundedness of single layer potentials associated to divergence form parabolic equations with complex coefficients. Calc. Var. Partial Differ. Equ.
- 2016 Nyström. Square functions estimates and the Kato problem for second order parabolic operators in \mathbb{R}^{n+1} . Adv. Math.
- 2017 Auscher, Egert, Nyström. *L*² Well-posedness of BVP for parabolic systems with measurable coefficients.

Theorem (Parabolic Kato estimate)

The operator $\mathcal{L}_w = \partial_t + \mathfrak{L}_w = \partial_t - \frac{1}{w(x)} \operatorname{div}_x w(x) \mathbb{A}(x,t) \nabla_x$ arises from the *accretive form* $\mathfrak{a}_w(u,v)$, it is *maximal accretive in* $L^2(\mathbb{R}^{n+1}, dw dt)$, the *domain* of its square root is that of the accretive form, that is,

$$\mathcal{D}\left(\sqrt{\mathcal{L}_w}\right) = H^{1/2}\left(\mathbb{R}, L_w^2\left(\mathbb{R}^n\right)\right) \bigcap L^2\left(\mathbb{R}, W_w^{1,2}\left(\mathbb{R}^n\right)\right).$$

Denote
$$\|f\|_{\mathbf{w}} = \langle f, f \rangle_{\mathbf{w}}^{1/2} = \left(\iint_{\mathbb{R}^{n+1}} |f(x,t)|^2 w(x) \, dx \, dt \right)^{1/2}$$
. The estimates
 $\left\| \sqrt{\mathcal{L}_w} u \right\|_{\mathbf{w}} \approx \|\nabla_x u\|_{\mathbf{w}} + \left\| D_t^{1/2} u \right\|_{\mathbf{w}}$

hold with constants depending only on n and the ellipticity constants of A. Here

$$\|f\|_{\mathbf{w}} = \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}} |f(x,t)|^2 w(x) \, dx \, dt\right)^{\frac{1}{2}}$$

About the weighted elliptic operator

The elliptic operator \mathfrak{L}_w in \mathbb{R}^n

$$\mathfrak{L}_{w}u=-\frac{1}{w\left(x\right)}\operatorname{div}_{x}w\left(x\right)\mathtt{A}\left(x\right)\nabla_{x}u$$

Is determined by the sesquilinear form

$$a_{w}(u,v) = \int_{\mathbb{R}^{n}} \mathbb{A}(x) \nabla u \cdot \overline{\nabla v} w(x) dx,$$

with domain $H_w^1(\mathbb{R}^n) = \left\{ f \in L_w^2(\mathbb{R}^n) : |\nabla f| \in L_w^2(\mathbb{R}^n) \right\} \subset L_w^2(\mathbb{R}^n).$

• The operator \mathfrak{L}_w is ω -sectorial, $\omega = \omega(\lambda, \Lambda)$, and therefore it is **m**-accretive in $L^2_w(\mathbb{R}^n)$: we have $\left\| (1 + \mathfrak{L}_w)^{-1} \right\|_{\mathcal{B}(L^2_w)} \leq 1$, and

$$\sup_{z\in\Sigma_{\theta}}\left\|z\left(z+\mathfrak{L}_{w}\right)^{-1}\right\|_{\mathcal{B}\left(L_{w}^{2}\right)}\leq M_{\theta},\qquad\theta\in\left(\frac{\pi}{2},\pi-\omega\right).$$

The elliptic operator \mathfrak{L}_w in \mathbb{R}^n

$$\mathfrak{L}_{w}u=-\frac{1}{w\left(x\right)}\operatorname{div}_{x}w\left(x\right)\mathtt{A}\left(x\right)\nabla_{x}u$$

Is determined by the sesquilinear form

$$a_{w}(u,v) = \int_{\mathbb{R}^{n}} \mathsf{A}(x) \, \nabla u \cdot \overline{\nabla v} \, w(x) \, dx,$$

with domain $H_w^1(\mathbb{R}^n) = \{ f \in L_w^2(\mathbb{R}^n) : |\nabla f| \in L_w^2(\mathbb{R}^n) \} \subset L_w^2(\mathbb{R}^n).$

• The operator \mathfrak{L}_w is ω -sectorial, $\omega = \omega(\lambda, \Lambda)$, and therefore it is m-accretive in $L^2_w(\mathbb{R}^n)$: we have $\left\| (1 + \mathfrak{L}_w)^{-1} \right\|_{\mathcal{B}(L^2_w)} \leq 1$, and $\sup_{z \in \Sigma_\theta} \left\| z \left(z + \mathfrak{L}_w \right)^{-1} \right\|_{\mathcal{B}(L^2_w)} \leq M_\theta, \quad \theta \in \left(\frac{\pi}{2}, \pi - \omega \right).$

Theorem (CU-R'15)

The operator $\mathfrak{L}_w = \mathfrak{L}_w = -\frac{1}{w(x)} \operatorname{div}_x w(x) \operatorname{A}(x,t) \nabla_x$ arises from the accretive form

$$a_{w}(u,v) = \int_{\mathbb{R}^{n}} \mathbb{A}(x,t) \nabla_{x} u(x,t) \cdot \overline{\nabla_{x} v(x,t)} w(x) dx,$$

it is maximal accretive in $L^2(\mathbb{R}^n, dw)$, the domain of its square root is that of the accretive form, that is,

$$\mathcal{D}\left(\sqrt{\mathfrak{L}_{w}}\right) = H^{1}_{w}\left(\mathbb{R}^{n}\right) = \left\{f \in L^{2}_{w}\left(\mathbb{R}^{n}\right) : |\nabla f| \in L^{2}_{w}\left(\mathbb{R}^{n}\right)\right\}$$

For
$$\|f\|_{w} = \left(\int_{\mathbb{R}} |f(x)|^{2} w(x) dx\right)^{1/2}$$
. The estimates
 $\left\|\sqrt{\mathfrak{L}_{w}}u\right\|_{w} \approx \|\nabla_{x}u\|_{w}$

hold with constants depending only on n and the ellipticity constants of A.

Theorem (Parabolic Kato estimate for time independent coefficients)

Let A(x) be a complex valued $n \times n$ elliptic matrix in \mathbb{R}^n , i.e.

 $\lambda \left| \xi \right|^2 \le \operatorname{Re} \left\langle \mathsf{A} \left(x \right) \xi, \xi \right\rangle, \qquad \left| \left\langle \mathsf{A} \left(x \right) \xi, \eta \right\rangle \right| \le \Lambda \left| \xi \right| \left| \eta \right| \qquad \text{for all } \xi, \eta \in \mathbb{C}^n.$

Let *w* be an A_2 weight in \mathbb{R}^n , and let

$$\mathcal{L}_{w} = \partial_{t} + \mathfrak{L}_{w} = \partial_{t} - rac{1}{w} \operatorname{div} w A(x)
abla \qquad in \ \mathbb{R}^{n} imes \mathbb{R}$$

then the square root operator $\mathcal{L}_w^{1/2}$ satisfies the estimates

$$\left\|\mathcal{L}_{w}^{1/2}u\right\|_{\mathbf{w}}\approx\left\|D_{t}^{1/2}u\right\|_{\mathbf{w}}+\left\|\nabla_{x}u\right\|_{\mathbf{w}}$$

for all $u \in V = H^{\frac{1}{2}}(\mathbb{R}; L^{2}_{w}(\mathbb{R}^{n})) \cap L^{2}(\mathbb{R}; H^{1}_{w}(\mathbb{R}^{n}))$, where the constants only depend on n, λ, Λ , and $[w]_{A_{2}}$. Here

$$\left\|f\right\|_{\mathbf{w}} = \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}} |f(x,t)|^2 w(x) \, dx \, dt\right)^{\frac{1}{2}}$$

The operator $\mathcal{L}_w = \frac{\partial}{\partial t} + \mathfrak{L}_w$ is defined via the sesquilinear form,

$$\mathfrak{a}_{w}(u,v) := \int_{\mathbb{R}} \left\langle H_{t} D_{t}^{\frac{1}{2}} u, D_{t}^{\frac{1}{2}} v \right\rangle_{w} + \left\langle \mathsf{A} \nabla u, \nabla v \right\rangle_{w} dt.$$

The domain $\dot{\mathcal{D}}(\mathcal{L}_w) \subset \dot{V} \subset L^2_{\mathbf{w}} = L^2(\mathbb{R}, L^2_w(\mathbb{R}^n))$ is dense in $L^2_{\mathbf{w}}$, where

$$\dot{V} = \dot{H}^{\frac{1}{2}}\left(\mathbb{R}; L^{2}_{w}\left(\mathbb{R}^{n}\right)\right) \bigcap L^{2}\left(\mathbb{R}; \dot{H}^{1}_{w}\left(\mathbb{R}^{n}\right)\right).$$

If $u \in \dot{\mathcal{D}}(\mathcal{L}_w)$, we say that

$$f := \mathcal{L}_w u \in L^2_{\mathbf{w}} \qquad \Longleftrightarrow \qquad \mathfrak{a}_{\mathbf{w}} (u, v) = \langle f, v \rangle_{\mathbf{w}} \quad \text{for all } v \in (\dot{V})^*.$$

Using that $D_t^{1/2}$ commutes with \mathfrak{L}_w and an approximation argument, we obtain $\|D_t^{1/2}u\|_{\dot{\mathfrak{L}}} \lesssim \|\mathcal{L}_w u\|_{\mathbf{w}} \quad \text{for all } u \in \mathcal{D}(\mathcal{L}_w).$

In particular,

$$\|\partial_t u\|_{\mathbf{w}} \lesssim \|\partial_t u + \mathfrak{L}_w u\|_{\mathbf{w}}$$
 for all $u \in \mathcal{D}(\mathcal{L}_w)$

The operator $\mathcal{L}_w = \frac{\partial}{\partial t} + \mathfrak{L}_w$ is defined via the sesquilinear form,

$$\mathfrak{a}_{w}(u,v) := \int_{\mathbb{R}} \left\langle H_{t} D_{t}^{\frac{1}{2}} u, D_{t}^{\frac{1}{2}} v \right\rangle_{w} + \left\langle \mathbf{A} \nabla u, \nabla v \right\rangle_{w} dt.$$

The domain $\dot{\mathcal{D}}(\mathcal{L}_w) \subset \dot{V} \subset L^2_{\mathbf{w}} = L^2(\mathbb{R}, L^2_w(\mathbb{R}^n))$ is dense in $L^2_{\mathbf{w}}$, where

$$\dot{V} = \dot{H}^{\frac{1}{2}}\left(\mathbb{R}; L^{2}_{w}\left(\mathbb{R}^{n}\right)\right) \bigcap L^{2}\left(\mathbb{R}; \dot{H}^{1}_{w}\left(\mathbb{R}^{n}\right)\right).$$

If $u \in \dot{\mathcal{D}}(\mathcal{L}_w)$, we say that

$$f := \mathcal{L}_w u \in L^2_{\mathbf{w}} \qquad \Longleftrightarrow \qquad \mathfrak{a}_{\mathbf{w}} (u, v) = \langle f, v \rangle_{\mathbf{w}} \quad \text{for all } v \in \left(\dot{V}\right)^*.$$

Using that $D_t^{1/2}$ commutes with \mathfrak{L}_w and an approximation argument, we obtain $\|D_t^{1/2}u\|_{\dot{\mathfrak{L}}} \lesssim \|\mathcal{L}_w u\|_{\mathbf{w}} \quad \text{for all } u \in \mathcal{D}(\mathcal{L}_w).$

In particular,

$$\|\partial_t u\|_{\mathbf{w}} \lesssim \|\partial_t u + \mathfrak{L}_w u\|_{\mathbf{w}} \quad \text{for all } u \in \mathcal{D}(\mathcal{L}_w).$$

Let φ be a radial mollifier, write $f_{\varepsilon} = \varphi_{\varepsilon} * f$. Given $u \in \dot{\mathcal{D}}(\mathcal{L}_w)$ and $v \in \dot{V}$, let $f = \mathcal{L}_w u$, we have

$$\mathfrak{a}_{w}(u_{\varepsilon},v)=\mathfrak{a}_{w}(u,v_{\varepsilon})=\langle f,v_{\varepsilon}\rangle=\langle f_{\varepsilon},v
angle$$
 ,

so $\mathcal{L}_w u_{\varepsilon} = f_{\varepsilon}$. In particular $u_{\varepsilon} \in \dot{\mathcal{D}}(\mathcal{L}_w) \cap C^{\infty}$. Let now $v \in \dot{V} \cap \dot{H}^1(\mathbb{R}; L^2_w(\mathbb{R}^n))$, then $D_t^{1/2}v \in \dot{V}$, and so

$$\mathfrak{a}_w\left(D_t^{1/2}u_{\varepsilon},v\right) = \mathfrak{a}_w\left(u_{\varepsilon},D_t^{1/2}v\right) = \left\langle f_{\varepsilon},D_t^{1/2}v\right\rangle_{\mathbf{w}} = \left\langle D_t^{1/2}f_{\varepsilon},v\right\rangle_{\mathbf{w}},$$

so $\mathcal{L}_w D_t^{1/2} u_{\varepsilon} = D_t^{1/2} f_{\varepsilon}$, and $D^{1/2} f_{\varepsilon} \in (\dot{V})^*$ with $\left\| D^{1/2} f_{\varepsilon} \right\|_{V^*} \lesssim \|f\|_{\mathbf{w}}$. In particular, taking $v = D_t^{1/2} u_{\varepsilon}$

$$\left\|D_t^{1/2}u_{\varepsilon}\right\|_{\dot{V}}^2 = \mathfrak{a}_w\left(D_t^{1/2}u_{\varepsilon}, D_t^{1/2}u_{\varepsilon}\right) = \left\langle D_t^{1/2}f_{\varepsilon}, D_t^{1/2}u_{\varepsilon}\right\rangle_{\mathbf{w}} \lesssim \left\|f_{\varepsilon}\right\|_{\mathbf{w}}\left\|D_t^{1/2}u_{\varepsilon}\right\|_{\dot{V}}$$

Letting $\varepsilon \rightarrow 0$ we obtain

$$\left\|\partial_{t}u\right\|_{\mathbf{w}} \leq \left\|D_{t}^{1/2}u\right\|_{V} \lesssim \left\|\mathcal{L}u\right\|_{\mathbf{w}} = \left\|\partial_{t}u + \mathfrak{L}_{w}u\right\|.$$

Let φ be a radial mollifier, write $f_{\varepsilon} = \varphi_{\varepsilon} * f$. Given $u \in \dot{\mathcal{D}}(\mathcal{L}_w)$ and $v \in \dot{V}$, let $f = \mathcal{L}_w u$, we have

$$\mathfrak{a}_w\left(u_{arepsilon},v
ight)=\mathfrak{a}_w\left(u,v_{arepsilon}
ight)=\langle f,v_{arepsilon}
angle=\langle f_{arepsilon},v
angle$$
 ,

so $\mathcal{L}_w u_{\varepsilon} = f_{\varepsilon}$. In particular $u_{\varepsilon} \in \dot{\mathcal{D}}(\mathcal{L}_w) \cap C^{\infty}$. Let now $v \in \dot{V} \cap \dot{H}^1(\mathbb{R}; L^2_w(\mathbb{R}^n))$, then $D_t^{1/2}v \in \dot{V}$, and so

$$\mathfrak{a}_{w}\left(D_{t}^{1/2}u_{\varepsilon},v\right)=\mathfrak{a}_{w}\left(u_{\varepsilon},D_{t}^{1/2}v\right)=\left\langle f_{\varepsilon},D_{t}^{1/2}v\right\rangle_{\mathbf{w}}=\left\langle D_{t}^{1/2}f_{\varepsilon},v\right\rangle_{\mathbf{w}},$$

so $\mathcal{L}_w D_t^{1/2} u_{\varepsilon} = D_t^{1/2} f_{\varepsilon}$, and $D^{1/2} f_{\varepsilon} \in (\dot{V})^*$ with $\left\| D^{1/2} f_{\varepsilon} \right\|_{V^*} \lesssim \|f\|_{\mathbf{w}}$. In particular, taking $v = D_t^{1/2} u_{\varepsilon}$

$$\left\|D_t^{1/2}u_{\varepsilon}\right\|_{\dot{V}}^2 = \mathfrak{a}_w\left(D_t^{1/2}u_{\varepsilon}, D_t^{1/2}u_{\varepsilon}\right) = \left\langle D_t^{1/2}f_{\varepsilon}, D_t^{1/2}u_{\varepsilon}\right\rangle_{\mathbf{w}} \lesssim \left\|f_{\varepsilon}\right\|_{\mathbf{w}}\left\|D_t^{1/2}u_{\varepsilon}\right\|_{\dot{V}}$$

Letting $\varepsilon \rightarrow 0$ we obtain

$$\left\|\partial_{t}u\right\|_{\mathbf{w}} \leq \left\|D_{t}^{1/2}u\right\|_{V} \lesssim \left\|\mathcal{L}u\right\|_{\mathbf{w}} = \left\|\partial_{t}u + \mathfrak{L}_{w}u\right\|.$$

Let φ be a radial mollifier, write $f_{\varepsilon} = \varphi_{\varepsilon} * f$. Given $u \in \dot{\mathcal{D}}(\mathcal{L}_w)$ and $v \in \dot{V}$, let $f = \mathcal{L}_w u$, we have

$$\mathfrak{a}_w\left(u_{arepsilon},v
ight)=\mathfrak{a}_w\left(u,v_{arepsilon}
ight)=\langle f,v_{arepsilon}
angle=\langle f_{arepsilon},v
angle$$
 ,

so $\mathcal{L}_w u_{\varepsilon} = f_{\varepsilon}$. In particular $u_{\varepsilon} \in \dot{\mathcal{D}}(\mathcal{L}_w) \cap C^{\infty}$. Let now $v \in \dot{V} \cap \dot{H}^1(\mathbb{R}; L^2_w(\mathbb{R}^n))$, then $D_t^{1/2}v \in \dot{V}$, and so

$$\mathfrak{a}_{w}\left(D_{t}^{1/2}u_{\varepsilon},v\right)=\mathfrak{a}_{w}\left(u_{\varepsilon},D_{t}^{1/2}v\right)=\left\langle f_{\varepsilon},D_{t}^{1/2}v\right\rangle_{\mathbf{w}}=\left\langle D_{t}^{1/2}f_{\varepsilon},v\right\rangle_{\mathbf{w}},$$

so $\mathcal{L}_w D_t^{1/2} u_{\varepsilon} = D_t^{1/2} f_{\varepsilon}$, and $D^{1/2} f_{\varepsilon} \in (\dot{V})^*$ with $\left\| D^{1/2} f_{\varepsilon} \right\|_{V^*} \lesssim \|f\|_{\mathbf{w}}$. In particular, taking $v = D_t^{1/2} u_{\varepsilon}$

$$\left\|D_t^{1/2}u_{\varepsilon}\right\|_{\dot{V}}^2 = \mathfrak{a}_w\left(D_t^{1/2}u_{\varepsilon}, D_t^{1/2}u_{\varepsilon}\right) = \left\langle D_t^{1/2}f_{\varepsilon}, D_t^{1/2}u_{\varepsilon}\right\rangle_{\mathbf{w}} \lesssim \left\|f_{\varepsilon}\right\|_{\mathbf{w}}\left\|D_t^{1/2}u_{\varepsilon}\right\|_{\dot{V}}.$$

Letting $\varepsilon \to 0$ we obtain

$$\left\|\partial_{t} u\right\|_{\mathbf{w}} \leq \left\|D_{t}^{1/2} u\right\|_{V} \lesssim \left\|\mathcal{L} u\right\|_{\mathbf{w}} = \left\|\partial_{t} u + \mathfrak{L}_{w} u\right\|.$$

Then also $\|\mathfrak{L}_w u\|_{\mathbf{w}} \le \|\partial_t u\|_{\mathbf{w}} + \|\partial_t u + \mathfrak{L}_w u\|_{\mathbf{w}} \le \|\partial_t u + \mathfrak{L}_w u\|_{\mathbf{w}}$, and we obtain the equivalences

$$\left\|\partial_{t}u\right\|_{\mathbf{w}}+\left\|\mathfrak{L}_{w}u\right\|_{\mathbf{w}}\lesssim\left\|\partial_{t}u+\mathfrak{L}_{w}u\right\|_{\mathbf{w}}\leq\left\|\partial_{t}u\right\|_{\mathbf{w}}+\left\|\mathfrak{L}_{w}u\right\|_{\mathbf{w}}.$$

This yields

$$\dot{\mathcal{D}}\left(\partial_{t}+\mathfrak{L}_{w}\right)=\dot{H}^{1}\left(\mathbb{R};L_{w}^{2}\left(\mathbb{R}^{n}\right)\right)\bigcap L^{2}\left(\mathbb{R};\dot{\mathcal{D}}\left(\mathfrak{L}_{w}\right)\right).$$

By homogeneous interpolation, we have

$$\begin{split} \dot{\mathcal{D}}\left(\left(\partial_{t}+\mathfrak{L}_{w}\right)^{\frac{1}{2}}\right) &= \left[\dot{H}^{1}\left(\mathbb{R};L_{w}^{2}\left(\mathbb{R}^{n}\right)\right)\bigcap L^{2}\left(\mathbb{R};\dot{\mathcal{D}}\left(\mathfrak{L}_{w}\right)\right)\right]_{\frac{1}{2}}\\ &\subset \left[\dot{H}^{1}\left(\mathbb{R};L_{w}^{2}\left(\mathbb{R}^{n}\right)\right)\right]_{\frac{1}{2}}\bigcap\left[L^{2}\left(\mathbb{R};\dot{\mathcal{D}}\left(\mathfrak{L}_{w}\right)\right)\right]_{\frac{1}{2}}\\ &= \dot{H}^{1/2}\left(\mathbb{R};L_{w}^{2}\left(\mathbb{R}^{n}\right)\right)\bigcap L^{2}\left(\mathbb{R};\dot{\mathcal{D}}\left(\mathfrak{L}_{w}^{1/2}\right)\right). \end{split}$$

From the Kato estimates for the weighted elliptic operators \mathfrak{L}_w [CU-R'15], we have that $\dot{\mathcal{D}}(\mathfrak{L}_w^{1/2}) = \dot{H}_w^1(\mathbb{R}^n)$, hence

$$\dot{\mathcal{D}}\left(\left(\partial_t + \mathfrak{L}_w\right)^{\frac{1}{2}}\right) \subset \dot{H}^{1/2}\left(\mathbb{R}; L^2_w\left(\mathbb{R}^n\right)\right) \bigcap L^2\left(\mathbb{R}; \dot{H}^1_w\left(\mathbb{R}^n\right)\right).$$

Then also $\|\mathfrak{L}_w u\|_{\mathbf{w}} \leq \|\partial_t u\|_{\mathbf{w}} + \|\partial_t u + \mathfrak{L}_w u\|_{\mathbf{w}} \leq \|\partial_t u + \mathfrak{L}_w u\|_{\mathbf{w}}$ and we obtain the equivalences

$$\left\|\partial_{t}u\right\|_{\mathbf{w}}+\left\|\mathfrak{L}_{w}u\right\|_{\mathbf{w}}\lesssim\left\|\partial_{t}u+\mathfrak{L}_{w}u\right\|_{\mathbf{w}}\leq\left\|\partial_{t}u\right\|_{\mathbf{w}}+\left\|\mathfrak{L}_{w}u\right\|_{\mathbf{w}}.$$

This yields

$$\dot{\mathcal{D}}\left(\partial_{t}+\mathfrak{L}_{w}\right)=\dot{H}^{1}\left(\mathbb{R};L_{w}^{2}\left(\mathbb{R}^{n}\right)\right)\bigcap L^{2}\left(\mathbb{R};\dot{\mathcal{D}}\left(\mathfrak{L}_{w}\right)\right).$$

By homogeneous interpolation, we have

$$\begin{split} \dot{\mathcal{D}}\left(\left(\partial_{t}+\mathfrak{L}_{w}\right)^{\frac{1}{2}}\right) &= \left[\dot{H}^{1}\left(\mathbb{R};L_{w}^{2}\left(\mathbb{R}^{n}\right)\right)\bigcap L^{2}\left(\mathbb{R};\dot{\mathcal{D}}\left(\mathfrak{L}_{w}\right)\right)\right]_{\frac{1}{2}}\\ &\subset \left[\dot{H}^{1}\left(\mathbb{R};L_{w}^{2}\left(\mathbb{R}^{n}\right)\right)\right]_{\frac{1}{2}}\bigcap\left[L^{2}\left(\mathbb{R};\dot{\mathcal{D}}\left(\mathfrak{L}_{w}\right)\right)\right]_{\frac{1}{2}}\\ &= \dot{H}^{1/2}\left(\mathbb{R};L_{w}^{2}\left(\mathbb{R}^{n}\right)\right)\bigcap L^{2}\left(\mathbb{R};\dot{\mathcal{D}}\left(\mathfrak{L}_{w}^{1/2}\right)\right). \end{split}$$

From the Kato estimates for the weighted elliptic operators \mathcal{L}_w [CU-R'15], we have that $\dot{\mathcal{D}}\left(\mathfrak{L}^{1/2}_{w}\right) = \dot{H}^{1}_{w}\left(\mathbb{R}^{n}\right)$, hence

$$\dot{\mathcal{D}}\left((\partial_t + \mathfrak{L}_w)^{\frac{1}{2}}\right) \subset \dot{H}^{1/2}\left(\mathbb{R}; L^2_w\left(\mathbb{R}^n\right)\right) \bigcap L^2\left(\mathbb{R}; \dot{H}^1_w\left(\mathbb{R}^n\right)\right).$$

By a similar estimate for the adjoint operator, we obtain the equality

$$\dot{\mathcal{D}}\left(\left(\partial_{t}+\mathfrak{L}_{w}\right)^{\frac{1}{2}}\right)=\dot{H}^{1/2}\left(\mathbb{R};L_{w}^{2}\left(\mathbb{R}^{n}\right)\right)\bigcap L^{2}\left(\mathbb{R};\dot{H}_{w}^{1}\left(\mathbb{R}^{n}\right)\right).$$

Since the equality above is *meant as interpolation spaces*, we have the equivalence of norms

$$\left\| (\partial_t + \mathfrak{L}_w)^{\frac{1}{2}} u \right\|_{\mathbf{w}} \approx \left\| D_t^{1/2} u \right\|_{\mathbf{w}} + \left\| \nabla_x u \right\|_{\mathbf{w}}.$$

The constants in the elliptic Kato estimates $\left\| \mathfrak{L}_{w}^{1/2} u \right\|_{w} \approx \left\| \nabla_{x} u \right\|_{w}$ depend only on *n*, λ , Λ , and $[w]_{A_{2}}$ [CU-R'15], hence the equivalence above has the same dependence.

The parabolic Kato estimate and its first order system CALGARY formulation

- Alan McIntosh first proposed that solving boundary value problems involving accretive sesquilinear forms could be addressed via a first order system of Cauchy-Riemann type (**Auscher**, **Axelsson**, and **Hofmann**. J. Funct. Anal. 255 (2008)).
- The sesquilinear form formulation of the parabolic problem, together with McIntosh's first order technique was recently applied to obtain several results on well-posedness of BVP for parabolic systems, and also the Kato estimate. (2017) [AEN] **Auscher**, **Egert**, **Nyström**. "*L*² Well-posedness of BVP for parabolic systems with measurable coefficients."
- We generalized Auscher, Egert, and Nyström's results to weighted parabolic operators.

The parabolic Kato estimate and its first order system CALGARY formulation

As in [AEN], we consider parabolic equations in $\mathbb{R}^{n+1}_+ \times \mathbb{R} = \left(\mathbb{R}^{n+1}_+\right)_X \times \mathbb{R}_t = (\mathbb{R}^+)_\lambda \times \mathbb{R}^n_x \times \mathbb{R}_t, (X, t) = ((\lambda, x), t):$

$$\mathcal{L}_{w}u = \partial_{t}u - \frac{1}{w(x)}\operatorname{div}_{X}w(x) \operatorname{A}(X,t) \nabla_{X}u = 0.$$

Where $\mathbb{A}(X, t) = \mathbb{A}((\lambda, x), t)$ is an $(n + 1) \times (n + 1)$ elliptic matrix with complex coefficients in \mathbb{R}^{n+1}_+ and $w \in A_2(\mathbb{R}^n)$.

We also say that *u* is a **reinforced weak solution** if $u \in V := H^{1/2}\left(\mathbb{R}; L^2_{\text{loc}}\left(\mathbb{R}^{n+1}, d\lambda dw\right)\right) \cap L^2_{\text{loc}}\left(\mathbb{R}; H^1_{\text{loc}}\left(\mathbb{R}^{n+1}, d\lambda dw\right)\right)$ and

 $\int_0^\infty \iint_{\mathbb{R}^{n+1}} \mathbb{A}\nabla_{\lambda,x} u \cdot \overline{\nabla_{\lambda,x} \phi} \, dw \, dt \, d\lambda - \int_0^\infty \iint_{\mathbb{R}^{n+1}} H_t D_t^{1/2} u \, \overline{D_t^{1/2} \phi} \, dw \, dt \, d\lambda = 0$

for all $\phi \in C_0^{\infty}\left(\mathbb{R}^{n+2}_+\right)$.

The parabolic Kato estimate and its first order system CALGARY formulation

As in [AEN], we consider parabolic equations in $\mathbb{R}^{n+1}_+ \times \mathbb{R} = \left(\mathbb{R}^{n+1}_+\right)_X \times \mathbb{R}_t = (\mathbb{R}^+)_\lambda \times \mathbb{R}^n_x \times \mathbb{R}_t, (X, t) = ((\lambda, x), t):$

$$\mathcal{L}_{w}u = \partial_{t}u - \frac{1}{w(x)}\operatorname{div}_{X}w(x) \wedge (X,t) \nabla_{X}u = 0.$$

Where $A(X,t) = A((\lambda, x), t)$ is an $(n+1) \times (n+1)$ elliptic matrix with complex coefficients in \mathbb{R}^{n+1}_+ and $w \in A_2(\mathbb{R}^n)$. We also say that u is a **reinforced weak solution** if $u \in V := H^{1/2}\left(\mathbb{R}; L^2_{loc}\left(\mathbb{R}^{n+1}_+, d\lambda dw\right)\right) \cap L^2_{loc}\left(\mathbb{R}; H^1_{loc}\left(\mathbb{R}^{n+1}_+, d\lambda dw\right)\right)$ and $\int_0^\infty \iint_{\mathbb{R}^{n+1}} A \nabla_{\lambda,x} u \cdot \overline{\nabla_{\lambda,x} \phi} \, dw \, dt \, d\lambda - \int_0^\infty \iint_{\mathbb{R}^{n+1}} H_t D_t^{1/2} u \, \overline{D_t^{1/2} \phi} \, dw \, dt \, d\lambda = 0$

for all $\phi \in C_0^{\infty} \left(\mathbb{R}^{n+2}_+ \right)$.

Nicholas Miller, "Weighted Sobolev spaces and pseudodifferential operators with smooth symbols", Trans. Amer. Math. Soc. 269 (1982).

Theorem (Miller)

Given a positive integer k and $1 , let <math>\Lambda^k$ denote the Bessel potential of order -k, i.e. Λ^k is a p.d.o. with symbol $(1 + |\xi|^2)^{-\frac{k}{2}}$, then for every $w \in A_p(\mathbb{R}^n)$

$$\Lambda^{k}\left(L_{p}\left(\mathbb{R}^{n},dw\right)\right)=W^{k,p}\left(\mathbb{R}^{n},dw\right),$$

where $W^{k,p}(\mathbb{R}^n, dw)$ is the weighted Sobolev space of functions with k distributional derivatives satisfying

$$\|f\|_{k,p,w}=\sum_{|\alpha|\leq k}\|D^{\alpha}f\|_{L^p(w)}<\infty.$$

Considering the parabolic metric

$$|\xi|_{\cup}^4 = \xi_1^4 + \xi_2^4 + \dots + \xi_n^4 + \xi_{n+1}^2,$$

we can define p.d.o. adapted to parabolic problems. For example, defining Λ^s_{\cup} as the p.d.o. with symbol $(1 + |\xi|^4_{\cup})^{-\frac{s}{4}}$, and identifying the n + 1-variable with t, we have, for integer $k \ge 0$

$$H^{2k}_{\cup}\left(\mathbb{R}^{n+1}\right) := \Lambda^{2k}_{\cup}\left(L^2\left(\mathbb{R}^{n+1}\right)\right) = H^k\left(\mathbb{R}, L^2\left(\mathbb{R}^n\right)\right) \bigcap L^2\left(\mathbb{R}, H^{2k}\left(\mathbb{R}^n\right)\right).$$

Similarly, given an $A_{p,\cup}$ -weight (satisfies the A_p -condition on parabolic balls), we can define weighted parabolic Sobolev spaces. In our applications, we take $\mathbf{w}(x,t) = w(x) \in A_2(\mathbb{R}^n) \implies \mathbf{w} \in A_{2,\cup}(\mathbb{R}^{n+1})$. Defining

$$H^{s}_{\cup}\left(\mathbb{R}^{n+1},d\mathbf{w}
ight)=\Lambda^{s}_{\cup}\left(L^{2}\left(\mathbb{R}^{n+1},d\mathbf{w}
ight)
ight),$$

we have that

$$H^{2k}_{\cup}\left(\mathbb{R}^{n+1},d\mathbf{w}
ight)=H^{k}\left(\mathbb{R},L^{2}\left(\mathbb{R}^{n},dw
ight)
ight)igcap L^{2}\left(\mathbb{R},H^{2k}\left(\mathbb{R}^{n},dw
ight)
ight).$$

Interpolation techniques provide inclusions (equalities, considering dual

Cristian Rios (University of Calgary)

Considering the parabolic metric

$$|\xi|_{\cup}^4 = \xi_1^4 + \xi_2^4 + \dots + \xi_n^4 + \xi_{n+1}^2,$$

we can define p.d.o. adapted to parabolic problems. For example, defining Λ^s_{\cup} as the p.d.o. with symbol $(1 + |\xi|^4_{\cup})^{-\frac{s}{4}}$, and identifying the n + 1-variable with t, we have, for integer $k \ge 0$

$$H_{\cup}^{2k}\left(\mathbb{R}^{n+1}\right) := \Lambda_{\cup}^{2k}\left(L^{2}\left(\mathbb{R}^{n+1}\right)\right) = H^{k}\left(\mathbb{R}, L^{2}\left(\mathbb{R}^{n}\right)\right) \bigcap L^{2}\left(\mathbb{R}, H^{2k}\left(\mathbb{R}^{n}\right)\right).$$

Similarly, given an $A_{p,\cup}$ -weight (satisfies the A_p -condition on parabolic balls), we can define weighted parabolic Sobolev spaces. In our applications, we take $\mathbf{w}(x,t) = w(x) \in A_2(\mathbb{R}^n) \implies \mathbf{w} \in A_{2,\cup}(\mathbb{R}^{n+1})$. Defining

$$H^{s}_{\cup}\left(\mathbb{R}^{n+1},d\mathbf{w}
ight)=\Lambda^{s}_{\cup}\left(L^{2}\left(\mathbb{R}^{n+1},d\mathbf{w}
ight)
ight),$$

we have that

$$H^{2k}_{\cup}\left(\mathbb{R}^{n+1},d\mathbf{w}\right)=H^{k}\left(\mathbb{R},L^{2}\left(\mathbb{R}^{n},dw\right)\right)\bigcap L^{2}\left(\mathbb{R},H^{2k}\left(\mathbb{R}^{n},dw\right)\right).$$

Interpolation techniques provide inclusions (equalities, considering dual

Cristian Rios (University of Calgary)

Remark A (classical) weak solution u of $\mathcal{L}_w u = 0$ satisfies $u \in L^2_{loc}\left(\mathbb{R}; H^1\left(\mathbb{R}^{n+1}_+, d\lambda dw\right)\right)$ and $\int_{\mathbb{R}} \iint_{\mathbb{R}^{n+1}_+} \mathbb{A} \nabla_{\lambda, x} u \cdot \overline{\nabla_{\lambda, x} \phi} w(x) dx d\lambda dt - \int_{\mathbb{R}} \iint_{\mathbb{R}^{n+1}_+} u \overline{\partial_t \phi} w(x) dx d\lambda dt = 0$ for all $\phi \in C_0^{\infty}\left(\mathbb{R}^{n+2}_+\right)$.

Given a reinforced weak solution u, we define the (n + 2)-vector

$$D_{\mathbb{A}}u(\lambda, x, t) := \begin{bmatrix} F_{\perp} \\ F_{\parallel} \\ F_{\theta} \end{bmatrix} = \begin{bmatrix} \partial_{v_{\mathbb{A}}}u(\lambda, x, t) \\ \nabla_{x}u(\lambda, x, t) \\ H_{t}D_{t}^{1/2}u(\lambda, x, t) \end{bmatrix}$$

(parabolic conormal differential),

where $\partial_{\nu_{\mathbb{A}}} u = (\mathbb{A} \nabla_{\lambda, x} u (\lambda, x, t))_{\perp}$. Then

$$D_{\mathbb{A}}u \in L^{2}_{\text{loc}}\left(\mathbb{R}; L^{2}_{\text{loc}}\left(\mathbb{R}^{n+1}_{+}, \mathbb{C}^{n+1}\right)\right) \times L^{2}\left(\mathbb{R}; L^{2}_{\text{loc}}\left(\mathbb{R}^{n+1}_{+}, \mathbb{C}\right)\right)$$

and, moreover,

$$\operatorname{curl}_{x}F_{\parallel} = 0, \qquad \nabla_{x}F_{\theta} = H_{t}D_{t}^{1/2}F_{\parallel}$$

in the sense of distributions on $\mathbb{R}^{n+1}_+ \times \mathbb{R}$. Split the coefficient matrix *A* as

$$\mathbf{A}(\lambda, x, t) = \begin{bmatrix} \mathbf{A}_{\perp\perp}(\lambda, x, t) & \mathbf{A}_{\perp\parallel}(\lambda, x, t) \\ \mathbf{A}_{\parallel\perp}(\lambda, x, t) & \mathbf{A}_{\parallel\parallel}(\lambda, x, t) \end{bmatrix} = \begin{bmatrix} 1 \times 1 & 1 \times n \\ n \times 1 & n \times n \end{bmatrix}$$

Given a reinforced weak solution u, we define the (n + 2)-vector

$$D_{\mathbb{A}}u(\lambda, x, t) := \begin{bmatrix} F_{\perp} \\ F_{\parallel} \\ F_{\theta} \end{bmatrix} = \begin{bmatrix} \partial_{\nu_{\mathbb{A}}}u(\lambda, x, t) \\ \nabla_{x}u(\lambda, x, t) \\ H_{t}D_{t}^{1/2}u(\lambda, x, t) \end{bmatrix}$$

(parabolic conormal differential),

where $\partial_{\nu_{\mathbb{A}}} u = (\mathbb{A} \nabla_{\lambda, x} u (\lambda, x, t))_{\perp}$. Then

$$D_{\mathbb{A}}u \in L^{2}_{\text{loc}}\left(\mathbb{R}; L^{2}_{\text{loc}}\left(\mathbb{R}^{n+1}_{+}, \mathbb{C}^{n+1}\right)\right) \times L^{2}\left(\mathbb{R}; L^{2}_{\text{loc}}\left(\mathbb{R}^{n+1}_{+}, \mathbb{C}\right)\right)$$

and, moreover,

$$\operatorname{curl}_{x} F_{\parallel} = 0, \qquad \nabla_{x} F_{\theta} = H_{t} D_{t}^{1/2} F_{\parallel}$$

in the sense of distributions on $\mathbb{R}^{n+1}_+ \times \mathbb{R}$. Split the coefficient matrix *A* as

$$\mathbf{A}(\lambda, x, t) = \begin{bmatrix} \mathbf{A}_{\perp\perp}(\lambda, x, t) & \mathbf{A}_{\perp\parallel}(\lambda, x, t) \\ \mathbf{A}_{\parallel\perp}(\lambda, x, t) & \mathbf{A}_{\parallel\parallel}(\lambda, x, t) \end{bmatrix} = \begin{bmatrix} 1 \times 1 & 1 \times n \\ n \times 1 & n \times n \end{bmatrix}$$

Let

$$\widehat{A} := \left[\begin{array}{cc} 1 & 0 \\ A_{\parallel \perp} & A_{\parallel \parallel} \end{array} \right] \left[\begin{array}{cc} A_{\perp \perp} & A_{\perp \parallel} \\ 0 & 1 \end{array} \right]^{-1} = \left[\begin{array}{cc} A_{\perp \perp}^{-1} & -A_{\perp \perp}^{-1} A_{\perp \parallel} \\ A_{\parallel \perp} A_{\perp \perp}^{-1} & A_{\parallel \parallel} - A_{\parallel \perp} A_{\perp \perp}^{-1} A_{\perp \parallel} \end{array} \right]$$

Introduce the operators

$$P_{w} = \begin{bmatrix} 0 & \frac{1}{w} \operatorname{div}_{x} w & -D_{t}^{1/2} \\ -\nabla_{x} & 0 & 0 \\ -H_{t} D_{t}^{1/2} & 0 & 0 \end{bmatrix}, \qquad M = \begin{bmatrix} \widehat{A}_{\perp \perp} & \widehat{A}_{\perp \parallel} & 0 \\ \widehat{A}_{\parallel \perp} & \widehat{A}_{\parallel \parallel} & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Then $P_{w}^{*} = \begin{bmatrix} 0 & \frac{1}{w} \operatorname{div}_{x} w & H_{t} D_{t}^{1/2} \\ -\nabla_{x} & 0 & 0 \\ -D_{t}^{1/2} & 0 & 0 \end{bmatrix}, \qquad \text{and}$

- P_w does not depend on λ .
- *M* is a bounded accretive operator.
- $D_t^{1/2}$ is non-local and $H_t D_t^{1/2}$ is not self-adjoint.

Let

$$\widehat{A} := \left[\begin{array}{cc} 1 & 0 \\ A_{\parallel \perp} & A_{\parallel \parallel} \end{array} \right] \left[\begin{array}{cc} A_{\perp \perp} & A_{\perp \parallel} \\ 0 & 1 \end{array} \right]^{-1} = \left[\begin{array}{cc} A_{\perp \perp}^{-1} & -A_{\perp \perp}^{-1} A_{\perp \parallel} \\ A_{\parallel \perp} A_{\perp \perp}^{-1} & A_{\parallel \parallel} - A_{\parallel \perp} A_{\perp \perp}^{-1} A_{\perp \parallel} \end{array} \right]$$

Introduce the operators

$$P_{w} = \begin{bmatrix} 0 & \frac{1}{w} \operatorname{div}_{x} w & -D_{t}^{1/2} \\ -\nabla_{x} & 0 & 0 \\ -H_{t} D_{t}^{1/2} & 0 & 0 \end{bmatrix}, \qquad M = \begin{bmatrix} \widehat{A}_{\perp \perp} & \widehat{A}_{\perp \parallel} & 0 \\ \widehat{A}_{\parallel \perp} & \widehat{A}_{\parallel \parallel} & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Then $P_{w}^{*} = \begin{bmatrix} 0 & \frac{1}{w} \operatorname{div}_{x} w & H_{t} D_{t}^{1/2} \\ -\nabla_{x} & 0 & 0 \\ -D_{t}^{1/2} & 0 & 0 \end{bmatrix}, \qquad \text{and}$

- P_w does not depend on λ .
- *M* is a bounded accretive operator.
- $D_t^{1/2}$ is non-local and $H_t D_t^{1/2}$ is not self-adjoint.

Theorem (Functional Calculus for the Parabolic Dirac Operator)

The operator MP_w *is bisectorial on* \mathbb{L}^2_w *with range* $\mathbb{R}(P_wM) = \mathbb{R}(P_w)$ *. It satisfies the quadratic estimate*

$$\int_{0}^{\infty} \left\| \lambda P_{w} M \left(1 + \left(\lambda P_{w} M \right)^{2} \right)^{-1} h \right\|_{\mathbf{w}}^{2} \frac{d\lambda}{\lambda} \sim \|h\|_{\mathbf{w}}^{2} \qquad \left(h \in \overline{\mathbb{R}\left(P_{w} M \right)} \right).$$

The angle ω of bisectoriality and constants in the quadratic estimate depend on n, the ellipticity of A, and the A_2 -norm $[w]_{A_2}$ of w. In particular $P_w M$ has a bounded holomorphic functional calculus on $\overline{\mathbb{R}(P_w M)} = \overline{\mathbb{R}(P_w)}$ on open double sectors S_μ for all $\mu \in (\omega, \pi/2)$. The same holds true for MP_w on $\overline{\mathbb{R}(MP_w)} = M\overline{\mathbb{R}(P_w)}$.

• Note that the square function estimates are needed only for $h \in \overline{\mathbb{R}(P_wM)} = \overline{\mathbb{R}(P_w)}$.

Theorem (Functional Calculus for the Parabolic Dirac Operator)

The operator MP_w *is bisectorial on* \mathbb{L}^2_w *with range* $\mathbb{R}(P_wM) = \mathbb{R}(P_w)$ *. It satisfies the quadratic estimate*

$$\int_{0}^{\infty} \left\| \lambda P_{w} M \left(1 + \left(\lambda P_{w} M \right)^{2} \right)^{-1} h \right\|_{\mathbf{w}}^{2} \frac{d\lambda}{\lambda} \sim \|h\|_{\mathbf{w}}^{2} \qquad \left(h \in \overline{\mathbb{R}\left(P_{w} M \right)} \right).$$

The angle ω of bisectoriality and constants in the quadratic estimate depend on n, the ellipticity of A, and the A_2 -norm $[w]_{A_2}$ of w. In particular $P_w M$ has a bounded holomorphic functional calculus on $\overline{\mathbb{R}(P_w M)} = \overline{\mathbb{R}(P_w)}$ on open double sectors S_μ for all $\mu \in (\omega, \pi/2)$. The same holds true for MP_w on $\overline{\mathbb{R}(MP_w)} = M\overline{\mathbb{R}(P_w)}$.

• Note that the square function estimates are needed only for $h \in \overline{\mathbb{R}(P_wM)} = \overline{\mathbb{R}(P_w)}$.

In order to obtain the Kato estimate from the square function estimate for $P_w M$, we take

$$\mathbf{A}(\lambda, x, t) = \mathbf{A}(x, t) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & A(x, t) & 0 \\ 0 & 0 & 1 \end{bmatrix} = M.$$

Then

$$P_{w}M = \begin{bmatrix} 0 & \frac{1}{w}\operatorname{div}_{x} w A & -D_{t}^{1/2} \\ -\nabla_{x} & 0 & 0 \\ -H_{t}D_{t}^{1/2} & 0 & 0 \end{bmatrix},$$

and

$$(P_w M)^2 = \begin{bmatrix} \mathcal{L}_w & 0 & 0\\ 0 & -\nabla_x \frac{1}{w} \operatorname{div}_x w A & \nabla_x D_t^{1/2}\\ 0 & -H_t D_t^{1/2} \frac{1}{w} \operatorname{div}_x w A & \partial_t \end{bmatrix}$$

.

Since P_wM has a bounded functional calculus on R (P_w), the operator sign (P_wM) is a bounded involution in this space.
 Therefore, [P_wM] := sign (P_wM) P_wM and P_wM have the same domain and

 $\|[P_wM]\|\approx \|P_wM\|.$

• Since, moreover, $[P_w M] = \sqrt{(P_w M)^2}$, it follows that

$$[P_w M] = \begin{bmatrix} \sqrt{\mathcal{L}_w} & 0\\ 0 & \sqrt{T_w} \end{bmatrix}, \quad T_w = \begin{bmatrix} -\nabla_x \frac{1}{w} \operatorname{div}_x w A & \nabla_x D_t^{1/2} \\ -H_t D_t^{1/2} \frac{1}{w} \operatorname{div}_x w A & \partial_t \end{bmatrix}.$$

Specializing to $\mathbf{h} = \begin{bmatrix} h\\ 0\\ 0 \end{bmatrix} \in \overline{R(P_w)}$, it follows that
$$\|\sqrt{\mathcal{L}_w h}\|_{\mathbf{w}} = \|[P_w M] \mathbf{h}\| \approx \|(P_w M) \mathbf{h}\|$$
$$= \|\nabla_x h\|_{\mathbf{w}} + \|H_t D_t^{1/2} h\|_{\mathbf{w}} \approx \|\nabla_x h\|_{\mathbf{w}} + \|D_t^{1/2} h\|_{\mathbf{w}}. \Box$$

- Since P_wM has a bounded functional calculus on R (P_w), the operator sign (P_wM) is a bounded involution in this space.
- Therefore, $[P_w M] := \operatorname{sign} (P_w M) P_w M$ and $P_w M$ have the same domain and

 $\|[P_wM]\| \approx \|P_wM\|.$

Since, moreover, $[P_w M] = \sqrt{(P_w M)^2}$, it follows that

$$[P_{w}M] = \begin{bmatrix} \sqrt{\mathcal{L}_{w}} & 0\\ 0 & \sqrt{T_{w}} \end{bmatrix}, \quad T_{w} = \begin{bmatrix} -\nabla_{x}\frac{1}{w}\operatorname{div}_{x}wA & \nabla_{x}D_{t}^{1/2}\\ -H_{t}D_{t}^{1/2}\frac{1}{w}\operatorname{div}_{x}wA & \partial_{t} \end{bmatrix}.$$

Specializing to $\mathbf{h} = \begin{bmatrix} h\\ 0\\ 0 \end{bmatrix} \in \overline{R(P_{w})}$, it follows that
$$\left\|\sqrt{\mathcal{L}_{w}h}\right\|_{\mathbf{w}} = \|[P_{w}M]\mathbf{h}\| \approx \|(P_{w}M)\mathbf{h}\|$$
$$= \|\nabla_{x}h\|_{\mathbf{w}} + \left\|H_{t}D_{t}^{1/2}h\right\|_{\mathbf{w}} \approx \|\nabla_{x}h\|_{\mathbf{w}} + \left\|D_{t}^{1/2}h\right\|_{\mathbf{w}}. \Box$$

- Since $P_w M$ has a bounded functional calculus on $R(P_w)$, the operator sign $(P_w M)$ is a bounded involution in this space.
- Therefore, $[P_wM] := \operatorname{sign}(P_wM) P_wM$ and P_wM have the same domain and

 $\|[P_wM]\|\approx \|P_wM\|.$

Since, moreover, $[P_w M] = \sqrt{(P_w M)^2}$, it follows that

$$[P_{w}M] = \begin{bmatrix} \sqrt{\mathcal{L}_{w}} & 0\\ 0 & \sqrt{T_{w}} \end{bmatrix}, \quad T_{w} = \begin{bmatrix} -\nabla_{x}\frac{1}{w}\operatorname{div}_{x}wA & \nabla_{x}D_{t}^{1/2}\\ -H_{t}D_{t}^{1/2}\frac{1}{w}\operatorname{div}_{x}wA & \partial_{t} \end{bmatrix}.$$

Specializing to $\mathbf{h} = \begin{bmatrix} h\\ 0\\ 0 \end{bmatrix} \in \overline{R(P_{w})}, \text{ it follows that}$
$$\left\|\sqrt{\mathcal{L}_{w}h}\right\|_{\mathbf{w}} = \|[P_{w}M]\mathbf{h}\| \approx \|(P_{w}M)\mathbf{h}\|$$
$$= \|\nabla_{x}h\|_{\mathbf{w}} + \left\|H_{t}D_{t}^{1/2}h\right\|_{\mathbf{w}} \approx \|\nabla_{x}h\|_{\mathbf{w}} + \left\|D_{t}^{1/2}h\right\|_{\mathbf{w}}. \Box$$

- Since $P_w M$ has a bounded functional calculus on $R(P_w)$, the operator sign $(P_w M)$ is a bounded involution in this space.
- Therefore, $[P_wM] := \operatorname{sign}(P_wM) P_wM$ and P_wM have the same domain and

 $\|[P_wM]\| \approx \|P_wM\|.$

Since, moreover, $[P_w M] = \sqrt{(P_w M)^2}$, it follows that

$$[P_{w}M] = \begin{bmatrix} \sqrt{\mathcal{L}_{w}} & 0\\ 0 & \sqrt{T_{w}} \end{bmatrix}, \quad T_{w} = \begin{bmatrix} -\nabla_{x}\frac{1}{w}\operatorname{div}_{x}wA & \nabla_{x}D_{t}^{1/2}\\ -H_{t}D_{t}^{1/2}\frac{1}{w}\operatorname{div}_{x}wA & \partial_{t} \end{bmatrix}.$$

Specializing to $\mathbf{h} = \begin{bmatrix} h\\ 0\\ 0 \end{bmatrix} \in \overline{R(P_{w})}$, it follows that
$$\|\sqrt{\mathcal{L}_{w}h}\|_{\mathbf{w}} = \|[P_{w}M]\mathbf{h}\| \approx \|(P_{w}M)\mathbf{h}\|$$
$$= \|\nabla_{x}h\|_{\mathbf{w}} + \|H_{t}D_{t}^{1/2}h\|_{\mathbf{w}} \approx \|\nabla_{x}h\|_{\mathbf{w}} + \|D_{t}^{1/2}h\|_{\mathbf{w}}. \Box$$

- Our proof follows closely the original proof in [AEN] for unweighted operators, based on the algorithm for the elliptic problem from **Auscher**, **Axelsson**, and **McIntosh**, Contemp. Math. (2010).
- The classic Sobolev spaces $W^{1,p}$ are replaced by the weighted Sobolev spaces $W^{1,p}(w)$.
- Some square function estimates required weighted norm inequalities techniques, and interpolation with change of measure.
- Unweighted estimates based on the parabolic metric (or modified metric like in the off-diagonal decay of the resolvent) naturally extend to the weighted setting (C-Z. theory, spaces of homogeneous type).
- The final decomposition for the proof of the Carleson measure estimate in the T (*b*) theorem required a corona decomposition of the weight, based on a construction due to **Garnett**, "Bounded analytic functions" (1981), as applied in **Auscher**, **Rosén**, and **Rule**, "Boundary value problems for degenerate elliptic equations and systems", Ann. Sci. Éc. Norm. Supér. (2015), for elliptic operators.
- Well-posedness results for BVP in [AEN] also extend to this weighted setting.

- Our proof follows closely the original proof in [AEN] for unweighted operators, based on the algorithm for the elliptic problem from **Auscher**, **Axelsson**, and **McIntosh**, Contemp. Math. (2010).
- The classic Sobolev spaces $W^{1,p}$ are replaced by the weighted Sobolev spaces $W^{1,p}(w)$.
- Some square function estimates required weighted norm inequalities techniques, and interpolation with change of measure.
- Unweighted estimates based on the parabolic metric (or modified metric like in the off-diagonal decay of the resolvent) naturally extend to the weighted setting (C-Z. theory, spaces of homogeneous type).
- The final decomposition for the proof of the Carleson measure estimate in the T (*b*) theorem required a corona decomposition of the weight, based on a construction due to **Garnett**, "Bounded analytic functions" (1981), as applied in **Auscher**, **Rosén**, and **Rule**, "Boundary value problems for degenerate elliptic equations and systems", Ann. Sci. Éc. Norm. Supér. (2015), for elliptic operators.
- Well-posedness results for BVP in [AEN] also extend to this weighted setting.

- Our proof follows closely the original proof in [AEN] for unweighted operators, based on the algorithm for the elliptic problem from **Auscher**, **Axelsson**, and **McIntosh**, Contemp. Math. (2010).
- The classic Sobolev spaces $W^{1,p}$ are replaced by the weighted Sobolev spaces $W^{1,p}(w)$.
- Some square function estimates required weighted norm inequalities techniques, and interpolation with change of measure.
- Unweighted estimates based on the parabolic metric (or modified metric like in the off-diagonal decay of the resolvent) naturally extend to the weighted setting (C-Z. theory, spaces of homogeneous type).
- The final decomposition for the proof of the Carleson measure estimate in the T (*b*) theorem required a corona decomposition of the weight, based on a construction due to **Garnett**, "Bounded analytic functions" (1981), as applied in **Auscher**, **Rosén**, and **Rule**, "Boundary value problems for degenerate elliptic equations and systems", Ann. Sci. Éc. Norm. Supér. (2015), for elliptic operators.
- Well-posedness results for BVP in [AEN] also extend to this weighted setting.

- Our proof follows closely the original proof in [AEN] for unweighted operators, based on the algorithm for the elliptic problem from **Auscher**, **Axelsson**, and **McIntosh**, Contemp. Math. (2010).
- The classic Sobolev spaces $W^{1,p}$ are replaced by the weighted Sobolev spaces $W^{1,p}(w)$.
- Some square function estimates required weighted norm inequalities techniques, and interpolation with change of measure.
- Unweighted estimates based on the parabolic metric (or modified metric like in the off-diagonal decay of the resolvent) naturally extend to the weighted setting (C-Z. theory, spaces of homogeneous type).
- The final decomposition for the proof of the Carleson measure estimate in the T (*b*) theorem required a corona decomposition of the weight, based on a construction due to **Garnett**, "Bounded analytic functions" (1981), as applied in **Auscher**, **Rosén**, and **Rule**, "Boundary value problems for degenerate elliptic equations and systems", Ann. Sci. Éc. Norm. Supér. (2015), for elliptic operators.
- Well-posedness results for BVP in [AEN] also extend to this weighted setting.

- Our proof follows closely the original proof in [AEN] for unweighted operators, based on the algorithm for the elliptic problem from **Auscher**, **Axelsson**, and **McIntosh**, Contemp. Math. (2010).
- The classic Sobolev spaces $W^{1,p}$ are replaced by the weighted Sobolev spaces $W^{1,p}(w)$.
- Some square function estimates required weighted norm inequalities techniques, and interpolation with change of measure.
- Unweighted estimates based on the parabolic metric (or modified metric like in the off-diagonal decay of the resolvent) naturally extend to the weighted setting (C-Z. theory, spaces of homogeneous type).
- The final decomposition for the proof of the Carleson measure estimate in the T (*b*) theorem required a corona decomposition of the weight, based on a construction due to **Garnett**, "Bounded analytic functions" (1981), as applied in **Auscher**, **Rosén**, and **Rule**, "Boundary value problems for degenerate elliptic equations and systems", Ann. Sci. Éc. Norm. Supér. (2015), for elliptic operators.
- Well-posedness results for BVP in [AEN] also extend to this weighted setting.

- Our proof follows closely the original proof in [AEN] for unweighted operators, based on the algorithm for the elliptic problem from **Auscher**, **Axelsson**, and **McIntosh**, Contemp. Math. (2010).
- The classic Sobolev spaces $W^{1,p}$ are replaced by the weighted Sobolev spaces $W^{1,p}(w)$.
- Some square function estimates required weighted norm inequalities techniques, and interpolation with change of measure.
- Unweighted estimates based on the parabolic metric (or modified metric like in the off-diagonal decay of the resolvent) naturally extend to the weighted setting (C-Z. theory, spaces of homogeneous type).
- The final decomposition for the proof of the Carleson measure estimate in the T (*b*) theorem required a corona decomposition of the weight, based on a construction due to **Garnett**, "Bounded analytic functions" (1981), as applied in **Auscher**, **Rosén**, and **Rule**, "Boundary value problems for degenerate elliptic equations and systems", Ann. Sci. Éc. Norm. Supér. (2015), for elliptic operators.
- Well-posedness results for BVP in [AEN] also extend to this weighted setting.

A general framework as proposed in [AEN] is to consider the operators

 $\mathcal{L}_{w_1,w_2}u = w_1(x,t)\,\partial_t u - \operatorname{div} w_2(x,t)\,\mathsf{A}(x,t)\,\nabla u.$

• We considered the case $w_1 = w_2 = w(x) \in A_2(\mathbb{R}^n)$.

• If $w_1 = w_2 = w(x, t)$, a weak formulation of $\mathcal{L}_{w_1, w_2} u = 0$ is

$$\iint \left(\mathbb{A} \left(x, t \right) \nabla_{x} u \cdot \nabla_{x} v + \partial_{t} u v \right) dw \left(x, t \right),$$

this was studied by **Chiarenza** and **Serapioni** (1984), (1987). They considered $w(x,t) \in A_2(t) \cap A_{1+\frac{2}{n}}(x)$. However, it is not clear if it is possible to implement a first order approach to this case. A general framework as proposed in [AEN] is to consider the operators

 $\mathcal{L}_{w_1,w_2}u = w_1(x,t)\,\partial_t u - \operatorname{div} w_2(x,t)\,\mathsf{A}(x,t)\,\nabla u.$

- We considered the case $w_1 = w_2 = w(x) \in A_2(\mathbb{R}^n)$.
- If $w_1 = w_2 = w(x, t)$, a weak formulation of $\mathcal{L}_{w_1, w_2} u = 0$ is

$$\iint \left(\mathbb{A} \left(x, t \right) \nabla_{x} u \cdot \nabla_{x} v + \partial_{t} u v \right) \, dw \left(x, t \right),$$

this was studied by **Chiarenza** and **Serapioni** (1984), (1987). They considered $w(x,t) \in A_2(t) \cap A_{1+\frac{2}{n}}(x)$. However, it is not clear if it is possible to implement a first order approach to this case.

Thank you.