Harmonic measure and quantitative rectifiability

Mihalis Mourgoglou

UPV/EHU & Ikerbasque

ICMAT Research Term on Real Harmonic Analysis and its Applications to PDE and GMT

08/05/2018

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Harmonic measure of a subset *E* of the boundary of a domain Ω in \mathbb{R}^{n+1} , is the probability that a Brownian motion started inside a domain first hits $\partial\Omega$ at *E*.

Harmonic measure of a subset *E* of the boundary of a domain Ω in \mathbb{R}^{n+1} , is the probability that a Brownian motion started inside a domain first hits $\partial\Omega$ at *E*.

• Let u_f be the solution to the Dirichlet problem with data $f \in C_c(\partial \Omega)$.

Harmonic measure of a subset *E* of the boundary of a domain Ω in \mathbb{R}^{n+1} , is the probability that a Brownian motion started inside a domain first hits $\partial\Omega$ at *E*.

- Let u_f be the solution to the Dirichlet problem with data $f \in C_c(\partial \Omega)$.
- For $x \in \Omega$, $f \mapsto u_f(x)$ is a linear functional

イロト イヨト イヨト イヨト 三日

Harmonic measure of a subset *E* of the boundary of a domain Ω in \mathbb{R}^{n+1} , is the probability that a Brownian motion started inside a domain first hits $\partial\Omega$ at *E*.

- Let u_f be the solution to the Dirichlet problem with data $f \in C_c(\partial \Omega)$.
- For $x \in \Omega$, $f \mapsto u_f(x)$ is a linear functional
- By Riesz Representation $\exists \omega_{\Omega}^{x}$ on $\partial \Omega$ s.t. $u_{f}(x) = \int_{\partial \Omega} f d\omega_{\Omega}^{x}$.

イロト イヨト イヨト イヨト 三日

Harmonic measure of a subset *E* of the boundary of a domain Ω in \mathbb{R}^{n+1} , is the probability that a Brownian motion started inside a domain first hits $\partial\Omega$ at *E*.

- Let u_f be the solution to the Dirichlet problem with data $f \in C_c(\partial \Omega)$.
- For $x \in \Omega$, $f \mapsto u_f(x)$ is a linear functional
- By Riesz Representation $\exists \omega_{\Omega}^{x}$ on $\partial \Omega$ s.t. $u_{f}(x) = \int_{\partial \Omega} f d\omega_{\Omega}^{x}$.

▲ロ▶▲御▶▲臣▶▲臣▶ 臣 のへで

Definition

A Borel set $E \subset \mathbb{R}^d$ is *n*-rectifiable if there exist $E_i \subset \mathbb{R}^n$ and $f_i : E_i \to \mathbb{R}^d$ Lipschitz so that $\mathcal{H}^n(E \setminus \bigcup_{i=1}^{\infty} f_i(E_i)) = 0$.

Definition

A Borel set $E \subset \mathbb{R}^d$ is *n*-rectifiable if there exist $E_i \subset \mathbb{R}^n$ and $f_i : E_i \to \mathbb{R}^d$ Lipschitz so that $\mathcal{H}^n(E \setminus \bigcup_{i=1}^{\infty} f_i(E_i)) = 0$.

Definition

 $E \subset \mathbb{R}^d$ is *n*-AD-regular if $\forall x \in E$ and $\forall r \in (0, \text{diam}(E))$.

$$C_0^{-1}r^n \leq \mathcal{H}^n(B(x,r) \cap E) \leq C_0 r^n.$$

・ロ・ ・ 四・ ・ 回・ ・ 回・

Definition

A Borel set $E \subset \mathbb{R}^d$ is *n*-rectifiable if there exist $E_i \subset \mathbb{R}^n$ and $f_i : E_i \to \mathbb{R}^d$ Lipschitz so that $\mathcal{H}^n(E \setminus \bigcup_{i=1}^{\infty} f_i(E_i)) = 0$.

Definition

 $E \subset \mathbb{R}^d$ is *n*-AD-regular if $\forall x \in E$ and $\forall r \in (0, \text{diam}(E))$.

$$C_0^{-1}r^n \leq \mathcal{H}^n(B(x,r) \cap E) \leq C_0 r^n.$$

Definition

The set $E \subset \mathbb{R}^d$ is uniformly *n*-rectifiable if

Definition

A Borel set $E \subset \mathbb{R}^d$ is *n*-rectifiable if there exist $E_i \subset \mathbb{R}^n$ and $f_i : E_i \to \mathbb{R}^d$ Lipschitz so that $\mathcal{H}^n(E \setminus \bigcup_{i=1}^{\infty} f_i(E_i)) = 0$.

Definition

 $E \subset \mathbb{R}^d$ is *n*-AD-regular if $\forall x \in E$ and $\forall r \in (0, \text{diam}(E))$.

$$C_0^{-1}r^n \leq \mathcal{H}^n(B(x,r) \cap E) \leq C_0 r^n.$$

Definition

The set $E \subset \mathbb{R}^d$ is uniformly *n*-rectifiable if

• E is n-AD-regular

Definition

A Borel set $E \subset \mathbb{R}^d$ is *n*-rectifiable if there exist $E_i \subset \mathbb{R}^n$ and $f_i : E_i \to \mathbb{R}^d$ Lipschitz so that $\mathcal{H}^n(E \setminus \bigcup_{i=1}^{\infty} f_i(E_i)) = 0$.

Definition

 $E \subset \mathbb{R}^d$ is *n*-AD-regular if $\forall x \in E$ and $\forall r \in (0, \text{diam}(E))$.

$$C_0^{-1}r^n \leq \mathcal{H}^n(B(x,r) \cap E) \leq C_0 r^n.$$

Definition

The set $E \subset \mathbb{R}^d$ is uniformly *n*-rectifiable if

- E is n-AD-regular
- $\exists \theta, M > 0$ s.t. $\forall x \in E$ and $\forall r \in (0, \text{diam}(E))$ $\exists g_{x,r} : B_n(0, r) \subset \mathbb{R}^n \to \mathbb{R}^d$ an *M*-Lipschitz mapping s.t.

 $\mathcal{H}^n(E \cap B(x,r) \cap g_{x,r}(B_n(0,r))) \geq \theta r^n.$

Let $K : \mathbb{R}^d \setminus \{0\} \to \mathbb{R}$ be a kernel s.t.

Let $K : \mathbb{R}^d \setminus \{0\} \to \mathbb{R}$ be a kernel s.t.

• K(-x) = -K(x) (i.e., odd)

Let $K : \mathbb{R}^d \setminus \{0\} \to \mathbb{R}$ be a kernel s.t.

•
$$K(-x) = -K(x)$$
 (i.e., odd)

• $K(\lambda x) = \lambda^{-n} K(x)$ (i.e. homogeneous of degree -n)

Let $K : \mathbb{R}^d \setminus \{0\} \to \mathbb{R}$ be a kernel s.t.

- $K(\lambda x) = \lambda^{-n} K(x)$ (i.e. homogeneous of degree -n)
- $\exists M \in \mathbb{N}$ s.t. $|\nabla_j K(x)| \lesssim_n C(j) |x|^{-n-j}$, for $j \in \{1, \ldots, M\}$.

Let $K : \mathbb{R}^d \setminus \{0\} \to \mathbb{R}$ be a kernel s.t.

•
$$K(-x) = -K(x)$$
 (i.e., odd)

- $K(\lambda x) = \lambda^{-n} K(x)$ (i.e. homogeneous of degree -n)
- $\exists M \in \mathbb{N}$ s.t. $|\nabla_j K(x)| \lesssim_n C(j) |x|^{-n-j}$, for $j \in \{1, \ldots, M\}$.

For *n*-AD-regular measures μ consider SIO of the form

$$T_{K,\mu}f(x) = \int K(x-y)f(y)d\mu(y).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Let $K : \mathbb{R}^d \setminus \{0\} \to \mathbb{R}$ be a kernel s.t.

•
$$K(-x) = -K(x)$$
 (i.e., odd)

- $K(\lambda x) = \lambda^{-n} K(x)$ (i.e. homogeneous of degree -n)
- $\exists M \in \mathbb{N}$ s.t. $|\nabla_j K(x)| \lesssim_n C(j) |x|^{-n-j}$, for $j \in \{1, \ldots, M\}$.

For *n*-AD-regular measures μ consider SIO of the form

$$T_{K,\mu}f(x) = \int K(x-y)f(y)d\mu(y).$$

Theorem (David-Semmes)

 μ is uniformly n-rectifiable \Leftrightarrow for all kernels K as above, $T_{K,\mu} : L^2(\mu) \to L^2(\mu)$ is bounded.

イロト イヨト イヨト イヨト 三日

- Riesz kernel: $K(x) = \frac{x}{|x|^{n+1}}, x \neq 0.$
- Riesz transform: $\mathcal{R}_{\mu}f(x) = \int K(x-y)f(y) d\mu(y)$.

- Riesz kernel: $K(x) = \frac{x}{|x|^{n+1}}, x \neq 0.$
- Riesz transform: $\mathcal{R}_{\mu}f(x) = \int K(x-y)f(y) d\mu(y)$.

Question (David-Semmes Problem)

Let μ be an n-AD regular measure in \mathbb{R}^d . $\mathcal{R}_{\mu}: L^2(\mu) \to L^2(\mu)$ is bounded $\stackrel{?}{\Rightarrow} \mu$ is uniformly n-rectifiable.

• n = 1, Mattila, Melnikov, and Verdera, '96.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- Riesz kernel: $K(x) = \frac{x}{|x|^{n+1}}, x \neq 0.$
- Riesz transform: $\mathcal{R}_{\mu}f(x) = \int K(x-y)f(y) d\mu(y)$.

Question (David-Semmes Problem)

Let μ be an n-AD regular measure in \mathbb{R}^d . $\mathcal{R}_{\mu} : L^2(\mu) \to L^2(\mu)$ is bounded $\stackrel{?}{\Rightarrow} \mu$ is uniformly n-rectifiable.

- n = 1, Mattila, Melnikov, and Verdera, '96.
- n = d 1, Nazarov, Tolsa and Volberg, '14.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- Riesz kernel: $K(x) = \frac{x}{|x|^{n+1}}, x \neq 0.$
- Riesz transform: $\mathcal{R}_{\mu}f(x) = \int K(x-y)f(y) d\mu(y)$.

Question (David-Semmes Problem)

Let μ be an n-AD regular measure in \mathbb{R}^d . $\mathcal{R}_{\mu} : L^2(\mu) \to L^2(\mu)$ is bounded $\stackrel{?}{\Rightarrow} \mu$ is uniformly n-rectifiable.

- n = 1, Mattila, Melnikov, and Verdera, '96.
- n = d 1, Nazarov, Tolsa and Volberg, '14.
- 2 ≤ n ≤ d − 2 still OPEN!

Assume we are in \mathbb{R}^{n+1} , $n \ge 2$. Denote by

• $\mathcal{E}(x, y) = c_n |x - y|^{1-n}$ the fundamental solution for Δ .

Assume we are in \mathbb{R}^{n+1} , $n \ge 2$. Denote by

- $\mathcal{E}(x, y) = c_n |x y|^{1-n}$ the fundamental solution for Δ .
- G(·, ·) the Green function in Ω

$$G(x,p) = \mathcal{E}(x-p) - \int \mathcal{E}(x-y) \, d\omega^p(y). \tag{1}$$

(日)

Assume we are in \mathbb{R}^{n+1} , $n \ge 2$. Denote by

- $\mathcal{E}(x, y) = c_n |x y|^{1-n}$ the fundamental solution for Δ .
- G(·, ·) the Green function in Ω

$$G(x,p) = \mathcal{E}(x-p) - \int \mathcal{E}(x-y) \, d\omega^p(y). \tag{1}$$

Note that the Riesz kernel is given by

$$K(x)=\tilde{c}_n\nabla\mathcal{E}(x).$$

イロト イヨト イヨト イヨト 三日

Assume we are in \mathbb{R}^{n+1} , $n \ge 2$. Denote by

- $\mathcal{E}(x, y) = c_n |x y|^{1-n}$ the fundamental solution for Δ .
- G(·, ·) the Green function in Ω

$$G(x,p) = \mathcal{E}(x-p) - \int \mathcal{E}(x-y) \, d\omega^p(y). \tag{1}$$

Note that the Riesz kernel is given by

$$K(x)=\tilde{c}_n\nabla\mathcal{E}(x).$$

Hence, differentiating both sides of (1),

$$abla G(x,p) =
abla \mathcal{E}(x-p) - \int K(x-y) d\omega^p(y)$$

$$=
abla \mathcal{E}(x-p) - \mathcal{R}\omega^p(x).$$

イロト イヨト イヨト イヨト 三日

Assume we are in \mathbb{R}^{n+1} , $n \ge 2$. Denote by

- $\mathcal{E}(x, y) = c_n |x y|^{1-n}$ the fundamental solution for Δ .
- G(·, ·) the Green function in Ω

$$G(x,p) = \mathcal{E}(x-p) - \int \mathcal{E}(x-y) \, d\omega^p(y). \tag{1}$$

Note that the Riesz kernel is given by

$$K(x)=\tilde{c}_n\nabla\mathcal{E}(x).$$

Hence, differentiating both sides of (1),

$$abla G(x,p) =
abla \mathcal{E}(x-p) - \int K(x-y) d\omega^p(y)$$

$$=
abla \mathcal{E}(x-p) - \mathcal{R}\omega^p(x).$$

So the Riesz transform is naturally connected to harmonic measure and Green function.

"Qualitative" one-phase and two-phase free boundary problems (FBP) for harmonic measure

"Qualitative" one-phase and two-phase free boundary problems (FBP) for harmonic measure

Theorem (Azzam, Hofmann, Martell, Mayboroda, M., Tolsa, Volberg, '15)

Let $\Omega \subset \mathbb{R}^{n+1}$ is a domain, $E \subset \partial \Omega$ with $\mathcal{H}^n(E) < \infty$. $\omega|_E \ll \mathcal{H}^n|_E \ll \omega|_E \Longrightarrow E$ is n-rectifiable.

"Qualitative" one-phase and two-phase free boundary problems (FBP) for harmonic measure

Theorem (Azzam, Hofmann, Martell, Mayboroda, M., Tolsa, Volberg, '15)

Let $\Omega \subset \mathbb{R}^{n+1}$ is a domain, $E \subset \partial \Omega$ with $\mathcal{H}^n(E) < \infty$. $\omega|_E \ll \mathcal{H}^n|_E \ll \omega|_E \Longrightarrow E$ is n-rectifiable.

Theorem (Azzam, M., Tolsa, '17, & Azzam, M., Tolsa, Volberg, '17)

Let $\Omega_1, \Omega_2 \subset \mathbb{R}^{n+1}$ are disjoint domains and let $E \subset \partial \Omega_1 \cap \partial \Omega_2$. $\omega^1 \ll \omega^2 \ll \omega^1$ on $E \Rightarrow \exists n$ -rectifiable $F \subset E$ s.t. • $\omega^1(E \setminus F) = \omega^2(E \setminus F) = 0$ • $\omega^1 \ll \omega^2 \ll \mathcal{H}^n \ll \omega^1$ on F.

(日) (圖) (E) (E) (E)

"Quantitative" one-phase (FBP) for ω

●●● 画 《画》《画》《画》《目》

"Quantitative" one-phase (FBP) for ω

Theorem (Hofmann, Martell, '14 and Hofmann, Martell, Uriarte-Tuero, '14 (proved in '12))

If $\Omega \subset \mathbb{R}^{n+1}$ is 1-NTA domain with AD-regular boundary, then $\omega^{x_B} \in w - A_{\infty}(B) \Leftrightarrow \partial \Omega \in UR$, for some corkscrew point $x_B \in cB \cap \Omega$.

Theorem (Azzam, Hofmann, Martell, Nyström, Toro '17 (proved in '14))

If $\Omega \subset \mathbb{R}^{n+1}$ is 1-NTA domain with UR boundary, then it is NTA $\Rightarrow \omega \in A_{\infty}$.

Theorem (Hofmann, Martell, '15–Hofmann, Le, Martell, Nystrom, '17)

Let $\Omega \subset \mathbb{R}^{n+1}$ open with the interior corkscrew condition and ADR boundary. If $\omega \ll \sigma$ and for every B, $\exists x_B$ Corkscrew point in B, $\int_{2B\cap\Omega} (k^{x_B})^q d\sigma \leq \sigma(B)^{1-q}$, then $\partial\Omega$ is uniformly rectifiable.

Theorem (M., Tolsa, '15)

Assume that $\Omega \subset \mathbb{R}^{n+1}$ is open and μ is a measure s.t. $\mu(B(x,r) \leq r^n \text{ and } \operatorname{supp}(\mu) \subset \partial \Omega.$ If $\exists \varepsilon, \varepsilon' \in (0,1)$ s.t. $\forall \mu$ -doubling ball B centered at supp μ with diam (B) \leq diam (supp μ), $\exists x_B \in \kappa B \cap \Omega \text{ s.t.: for any } E \subset B,$ if $\mu(E) \leq \varepsilon \mu(B)$, then $\omega^{x_B}(E) \leq \varepsilon' \omega^{x_B}(B).$ Then the Riesz transform $\mathcal{R}_{\mu} : L^2(\mu) \to L^2(\mu)$ is bounded.

Characterization of A_{∞} condition for harmonic measure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Characterization of A_{∞} condition for harmonic measure

Ω is **semiuniform domain** if for every *x* ∈ Ω and *y* ∈ ∂Ω, there exists a rectifiable curve $γ ⊂ \overline{Ω}$ connecting *x* and *y* such that

- $\lambda \min(\ell(x, z), \ell(z, y)) \leq \operatorname{dist}(z, \partial \Omega)$
- $\ell(\gamma) \leq C|x y|$ (bounding turning).

(日)
Ω is **semiuniform domain** if for every x ∈ Ω and y ∈ ∂Ω, there exists a rectifiable curve $γ ⊂ \overline{Ω}$ connecting *x* and *y* such that

- $\lambda \min(\ell(x, z), \ell(z, y)) \leq \operatorname{dist}(z, \partial \Omega)$
- $\ell(\gamma) \leq C|x y|$ (bounding turning).

Theorem (Azzam, '17)

If $\Omega \subset \mathbb{R}^{n+1}$ is a domain with AD-regular boundary then the following are equivalent:

Ω is **semiuniform domain** if for every *x* ∈ Ω and *y* ∈ ∂Ω, there exists a rectifiable curve $γ ⊂ \overline{Ω}$ connecting *x* and *y* such that

- $\lambda \min(\ell(x, z), \ell(z, y)) \leq \operatorname{dist}(z, \partial \Omega)$
- $\ell(\gamma) \leq C|x y|$ (bounding turning).

Theorem (Azzam, '17)

If $\Omega \subset \mathbb{R}^{n+1}$ is a domain with AD-regular boundary then the following are equivalent:

• Ω is semi-uniform with UR boundary,

Ω is **semiuniform domain** if for every *x* ∈ Ω and *y* ∈ ∂Ω, there exists a rectifiable curve $γ ⊂ \overline{Ω}$ connecting *x* and *y* such that

- $\lambda \min(\ell(x, z), \ell(z, y)) \leq \operatorname{dist}(z, \partial \Omega)$
- $\ell(\gamma) \leq C|x y|$ (bounding turning).

Theorem (Azzam, '17)

If $\Omega \subset \mathbb{R}^{n+1}$ is a domain with AD-regular boundary then the following are equivalent:

- Ω is semi-uniform with UR boundary,
- Ω has very big pieces of interior chord-arc subdomains,

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ω is **semiuniform domain** if for every *x* ∈ Ω and *y* ∈ ∂Ω, there exists a rectifiable curve $γ ⊂ \overline{Ω}$ connecting *x* and *y* such that

- $\lambda \min(\ell(x, z), \ell(z, y)) \leq \operatorname{dist}(z, \partial \Omega)$
- $\ell(\gamma) \leq C|x y|$ (bounding turning).

Theorem (Azzam, '17)

If $\Omega \subset \mathbb{R}^{n+1}$ is a domain with AD-regular boundary then the following are equivalent:

- Ω is semi-uniform with UR boundary,
- Ω has very big pieces of interior chord-arc subdomains,
- $\omega \in A_{\infty}$.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < @

Definition

Given $x \in \Omega$, $y \in \partial\Omega$, and $\lambda > 0$, a λ -carrot curve (or just *carrot curve*) from *x* to *y* is a curve $\gamma \subset \Omega \cup \{y\}$ with end-points *x* and *y* such that $\delta_{\Omega}(z) := \operatorname{dist}(z, \partial\Omega) \ge \kappa \mathcal{H}^{1}(\gamma(y, z))$ for all $z \in \gamma$, where $\gamma(y, z)$ is the arc in γ between *y* and *z*.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

Definition

Given $x \in \Omega$, $y \in \partial\Omega$, and $\lambda > 0$, a λ -carrot curve (or just *carrot curve*) from *x* to *y* is a curve $\gamma \subset \Omega \cup \{y\}$ with end-points *x* and *y* such that $\delta_{\Omega}(z) := \operatorname{dist}(z, \partial\Omega) \ge \kappa \mathcal{H}^{1}(\gamma(y, z))$ for all $z \in \gamma$, where $\gamma(y, z)$ is the arc in γ between *y* and *z*.

Definition

Ω satisfies the **weak local John condition** (with parameters λ, θ, Λ) if there are constants λ, θ ∈ (0, 1) and Λ ≥ 2 such that for every x ∈ Ω there is a Borel subset $F ⊂ B(x, Λδ_Ω(x)) ∩ ∂Ω$) with $\mathcal{H}^n(F) ≥ θ \mathcal{H}^n(B(x, Λδ_Ω(x)) ∩ ∂Ω)$ such that every y ∈ F can be joined to x by a λ-carrot curve.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < @

Theorem (Hofmann, Martell, '17-18 and Azzam, M., Tolsa, '18)

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \ge 2$, be an open set with n-AD-regular boundary satisfying the corkscrew condition. Then the following are equivalent:

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

Theorem (Hofmann, Martell, '17-18 and Azzam, M., Tolsa, '18)

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \ge 2$, be an open set with n-AD-regular boundary satisfying the corkscrew condition. Then the following are equivalent:

• harmonic measure for Ω is in weak- A_{∞}

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

Theorem (Hofmann, Martell, '17-18 and Azzam, M., Tolsa, '18)

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \ge 2$, be an open set with n-AD-regular boundary satisfying the corkscrew condition. Then the following are equivalent:

- harmonic measure for Ω is in weak-A_{\infty}
- ∂Ω is uniformly n-rectifiable and Ω satisfies the weak local John condition

Theorem (Hofmann, Martell, '17-18 and Azzam, M., Tolsa, '18)

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \ge 2$, be an open set with n-AD-regular boundary satisfying the corkscrew condition. Then the following are equivalent:

- harmonic measure for Ω is in weak- A_{∞}
- ∂Ω is uniformly n-rectifiable and Ω satisfies the weak local John condition
- Ω has big pieces of interior chord-arc subdomains.

"Quantitative" two-phase (FBP) for ω

・ロト・日本・山下・ 山下・ 白マ

"Quantitative" two-phase (FBP) for ω

Theorem (Azzam, M., Tolsa, 2017)

Let $\Omega_1, \Omega_2 \subseteq \mathbb{R}^{n+1}$ disjoint CDC domains and $\omega_i^{p_i}$ be harmonic measures of Ω_i with poles $p_i \in \Omega_i$, *i*=1,2. Set $F := \partial \Omega_1 \cap \partial \Omega_2 \neq \emptyset$.

"Quantitative" two-phase (FBP) for ω

Theorem (Azzam, M., Tolsa, 2017)

Let $\Omega_1, \Omega_2 \subseteq \mathbb{R}^{n+1}$ disjoint CDC domains and $\omega_i^{p_i}$ be harmonic measures of Ω_i with poles $p_i \in \Omega_i$, i=1,2. Set $F := \partial \Omega_1 \cap \partial \Omega_2 \neq \emptyset$. Suppose $\exists \varepsilon, \varepsilon' \in (0,1)$ s.t. if B ball centered at F with diam (B) $\leq \min(\text{diam}(\partial \Omega_1), \text{diam}(\partial \Omega_2))$, $\exists x_i \in \frac{1}{4}B \cap \Omega_i$ for i = 1, 2, s.t.; $\forall E \subset B$,

if
$$\omega_1^{x_1}(E) \le \varepsilon \, \omega_1^{x_1}(B)$$
, then $\omega_2^{x_2}(E) \le \varepsilon' \, \omega_2^{x_2}(B)$. (2)

Theorem (Azzam, M., Tolsa, 2017)

Let $\Omega_1, \Omega_2 \subseteq \mathbb{R}^{n+1}$ disjoint CDC domains and $\omega_i^{p_i}$ be harmonic measures of Ω_i with poles $p_i \in \Omega_i$, i=1,2. Set $F := \partial \Omega_1 \cap \partial \Omega_2 \neq \emptyset$. Suppose $\exists \varepsilon, \varepsilon' \in (0,1)$ s.t. if B ball centered at F with diam (B) $\leq \min(\text{diam}(\partial \Omega_1), \text{diam}(\partial \Omega_2))$, $\exists x_i \in \frac{1}{4}B \cap \Omega_i$ for i = 1, 2, s.t.; $\forall E \subset B$,

$$\text{if} \quad \omega_1^{x_1}(E) \leq \varepsilon \, \omega_1^{x_1}(B), \quad \text{then} \quad \omega_2^{x_2}(E) \leq \varepsilon' \, \omega_2^{x_2}(B).$$

If ε' is small enough (depending only on n and the CDC constant), then $\exists \theta_i \in (0, 1)$ and a uniformly rectifiable set $\Sigma_B \subset \mathbb{R}^{n+1}$ such that

$$\omega_i^{x_i}(\Sigma_{\mathcal{B}}\cap \mathcal{F}\cap \mathcal{B})\geq heta_i, \quad i=1,2.$$

52/90

Theorem (Azzam, M., Tolsa, 2017)

Let $\Omega_1, \Omega_2 \subseteq \mathbb{R}^{n+1}$ disjoint CDC domains and $\omega_i^{p_i}$ be harmonic measures of Ω_i with poles $p_i \in \Omega_i$, i=1,2. Set $F := \partial \Omega_1 \cap \partial \Omega_2 \neq \emptyset$. Suppose $\exists \varepsilon, \varepsilon' \in (0,1)$ s.t. if B ball centered at F with diam (B) $\leq \min(\text{diam}(\partial \Omega_1), \text{diam}(\partial \Omega_2))$, $\exists x_i \in \frac{1}{4}B \cap \Omega_i$ for i = 1, 2, s.t.; $\forall E \subset B$,

$$\text{if} \quad \omega_1^{x_1}(E) \leq \varepsilon \, \omega_1^{x_1}(B), \quad \text{then} \quad \omega_2^{x_2}(E) \leq \varepsilon' \, \omega_2^{x_2}(B).$$

If ε' is small enough (depending only on n and the CDC constant), then $\exists \theta_i \in (0, 1)$ and a uniformly rectifiable set $\Sigma_B \subset \mathbb{R}^{n+1}$ such that

$$\omega_i^{X_i}(\Sigma_{\mathcal{B}}\cap \mathcal{F}\cap \mathcal{B})\geq heta_i, \quad i=1,2.$$

Moreover, there is c > 0 so that if x_1 is also corkscrew points for $\frac{1}{4}B$, then

$$\mathcal{H}^{d}(\Sigma_{B} \cap F \cap B) \geq cr(B)^{n}.$$
(3)

• Density of a measure: $\Theta^n_\mu(B) = \frac{\mu(B)}{r(B)^n}$.

Preliminary notation

- Density of a measure: $\Theta^n_\mu(B) = \frac{\mu(B)}{r(B)^n}$.
- $P_{\gamma,\mu}(B) = \sum_{j\geq 0} 2^{-j\gamma} \Theta_{\mu}^n(2^j B),$

Preliminary notation

- Density of a measure: $\Theta_{\mu}^{n}(B) = \frac{\mu(B)}{r(B)^{n}}$.
- $P_{\gamma,\mu}(B) = \sum_{j\geq 0} 2^{-j\gamma} \Theta_{\mu}^{n}(2^{j}B),$
- Jones' β function:

For a measure μ , $\xi \in \text{supp } \mu$ and r > 0, we define

$$\beta_{\mu,1}(\xi,r) := \inf_L \beta_{\mu,1}^L(B(\xi,r)) := \inf_L \frac{1}{r^n} \int_{B(\xi,r)} \frac{\operatorname{dist}(x,L)}{r} d\mu(x)$$

where the infimum is over all *n*-dimensional planes *L*.

(日)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●三 のへで

There is a ball B₁ ⊂ B₀ centered at F s.t. p₁, p₂ are corkscrew points for B₁. (use Hölder continuity on the boundary in CDC domains + weak-Ã_∞ property).

- There is a ball B₁ ⊂ B₀ centered at F s.t. p₁, p₂ are corkscrew points for B₁. (use Hölder continuity on the boundary in CDC domains + weak-Ã_∞ property).
- If B is arbitrary ball, G ⊂ B so that ω₂(B\G) < 2ε'ω₂(B), and

$$A^{-1}\frac{\omega_1(B)}{\omega_2(B)} \leq \frac{\omega_1(B(x,r))}{\omega_2(B(x,r))} \leq A\frac{\omega_1(B)}{\omega_2(B)} \quad x \in G, 0 < r < r(B).$$

(stopping type argument)

- There is a ball B₁ ⊂ B₀ centered at F s.t. p₁, p₂ are corkscrew points for B₁. (use Hölder continuity on the boundary in CDC domains + weak-Ã_∞ property).
- If B is arbitrary ball, G ⊂ B so that ω₂(B\G) < 2ε'ω₂(B), and

$$A^{-1}\frac{\omega_1(B)}{\omega_2(B)} \leq \frac{\omega_1(B(x,r))}{\omega_2(B(x,r))} \leq A\frac{\omega_1(B)}{\omega_2(B)} \quad x \in G, 0 < r < r(B).$$

(stopping type argument)

• There is a ball $B_2 \subset B_1$ centered at F, with $r(B_1) \approx r(B_2)$ and $r(B_2) \leq \tau |p_i - c_{B_2}|$, for i = 1, 2, s.t. $\omega_i(B_2) \geq \omega_i(B_1)$, $\beta_{1,\omega_2}^n(B_2) < \eta \Theta_{\omega_2}^n(B_2)$. (compactness argument-limits of harmonic measure-use [AMTV16])

- There is a ball B₁ ⊂ B₀ centered at F s.t. p₁, p₂ are corkscrew points for B₁. (use Hölder continuity on the boundary in CDC domains + weak-Ã_∞ property).
- If B is arbitrary ball, G ⊂ B so that ω₂(B\G) < 2ε'ω₂(B), and

$$A^{-1}\frac{\omega_1(B)}{\omega_2(B)} \leq \frac{\omega_1(B(x,r))}{\omega_2(B(x,r))} \leq A\frac{\omega_1(B)}{\omega_2(B)} \quad x \in G, 0 < r < r(B).$$

(stopping type argument)

There is a ball B₂ ⊂ B₁ centered at F, with r(B₁) ≈ r(B₂) and r(B₂) ≲ τ |p_i − c_{B₂}|, for i = 1,2, s.t. ω_i(B₂) ≳ ω_i(B₁), βⁿ_{1,ω₂}(B₂) < η Θⁿ_{ω₂}(B₂). (compactness argument-limits of harmonic measure-use [AMTV16])

•
$$G^{bd} = \{x \in G : \Theta_{\omega_1}^n(x,r) \ge \rho \Theta_{\omega_1}^n(B_2), \forall r \in (0,2r(B_2))\}.$$

- There is a ball B₁ ⊂ B₀ centered at F s.t. p₁, p₂ are corkscrew points for B₁. (use Hölder continuity on the boundary in CDC domains + weak-Ã_∞ property).
- If B is arbitrary ball, G ⊂ B so that ω₂(B\G) < 2ε'ω₂(B), and

$$A^{-1} \frac{\omega_1(B)}{\omega_2(B)} \leq \frac{\omega_1(B(x,r))}{\omega_2(B(x,r))} \leq A \frac{\omega_1(B)}{\omega_2(B)} \quad x \in G, 0 < r < r(B).$$

(stopping type argument)

There is a ball B₂ ⊂ B₁ centered at F, with r(B₁) ≈ r(B₂) and r(B₂) ≲ τ |p_i − c_{B₂}|, for i = 1,2, s.t. ω_i(B₂) ≳ ω_i(B₁), βⁿ_{1,ω₂}(B₂) < η Θⁿ_{ω₂}(B₂). (compactness argument-limits of harmonic measure-use [AMTV16])

•
$$G^{bd} = \{x \in G : \Theta_{\omega_1}^n(x,r) \ge \rho \Theta_{\omega_1}^n(B_2), \forall r \in (0,2r(B_2))\}.$$

•
$$G^{sd} = G \setminus G^{bd}$$
.

Theorem

There is C > 0 depending only on n such that for all p, q > 1the following holds. Let ν be a measure supported in a ball Bsuch that $\nu(B(x, r)) \leq r^n$ for all $x \in \mathbb{R}^{n+1}$ and r > 0, and define

$$F_{p} = \{x \in \operatorname{supp}(\nu) : \nu(B(x,r)) \ge r^{n}/p\}$$
$$F_{p,q} = \{x \in F_{p} : \nu(B(x,r) \cap F_{p}) \ge \frac{r^{n}}{pq}\}.$$

・ロト ・四ト ・ヨト ・ヨト

Theorem

There is C > 0 depending only on n such that for all p, q > 1the following holds. Let ν be a measure supported in a ball Bsuch that $\nu(B(x, r)) \leq r^n$ for all $x \in \mathbb{R}^{n+1}$ and r > 0, and define

$$F_{\rho} = \{x \in \operatorname{supp}(\nu) : \nu(B(x,r)) \ge r^n/\rho\},\$$

$$F_{\rho,q} = \{x \in F_{\rho} : \nu(B(x,r) \cap F_{\rho}) \ge \frac{r^n}{pq}\}.$$

If $\mathcal{R}_{\nu} : L^{2}(\nu) \to L^{2}(\nu)$ is bounded, then there is a $\frac{C}{pq}$ -AD regular measure σ so that $\sigma|_{F_{p,q}} = \nu|_{F_{p,q}}$ and $\mathcal{R}_{\sigma} : L^{2}(\sigma) \to L^{2}(\sigma)$ is bounded. That is, σ is uniformly rectifiable. If $\nu(F_{p}) \geq \delta ||\nu||$ then there exists q large depending on δ s.t. $\nu(F_{p,q}) \geq \frac{1}{2}\nu(F_{p})$.

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・ ・

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● の Q ()

Case 1: $\omega_1(G^{bd}) \geq \delta \, \omega_1(B)$.

のとの 川 (中) (山) (山) (山) (山)

Case 1: $\omega_1(G^{bd}) \geq \delta \, \omega_1(B)$.

• $G' := \{x \in G^{bd} : \Theta_{\omega_1|_G}^n(x,r) \ge \rho' \Theta_{\omega_1}^n(x,r), \forall r \in (0,2r(B))\}.$

Case 1: $\omega_1(G^{bd}) \geq \delta \, \omega_1(B)$.

- $G' := \{x \in G^{bd} : \Theta_{\omega_1|_G}^n(x,r) \ge \rho' \Theta_{\omega_1}^n(x,r), \forall r \in (0,2r(B))\}.$
- Besicovitch covering, for ρ' small enough, $\omega_1(G') \geq \frac{1}{2}\omega_1(G^{bd}) \geq \frac{\delta}{2}\omega_1(B).$

Case 1: $\omega_1(G^{bd}) \geq \delta \, \omega_1(B)$.

- $G' := \{x \in G^{bd} : \Theta_{\omega_1|_G}^n(x,r) \ge \rho' \Theta_{\omega_1}^n(x,r), \forall r \in (0,2r(B))\}.$
- Besicovitch covering, for ρ' small enough, $\omega_1(G') \geq \frac{1}{2}\omega_1(G^{bd}) \geq \frac{\delta}{2}\omega_1(B).$
- For $x \in G'$, $\Theta_{\omega_1|_G}^n(x, r) \ge \rho' \rho \Theta_{\omega_1|_G}^n(B)$.

Case 1: $\omega_1(G^{bd}) \geq \delta \, \omega_1(B)$.

- $G' := \{x \in G^{bd} : \Theta_{\omega_1|_G}^n(x,r) \ge \rho' \Theta_{\omega_1}^n(x,r), \forall r \in (0,2r(B))\}.$
- Besicovitch covering, for ρ' small enough, $\omega_1(G') \geq \frac{1}{2}\omega_1(G^{bd}) \geq \frac{\delta}{2}\omega_1(B).$
- For $x \in G'$, $\Theta_{\omega_1|_G}^n(x, r) \ge \rho' \rho \Theta_{\omega_1|_G}^n(B)$.

• Set
$$\nu = \frac{\omega_1|_G}{\Theta_{\omega_1|_G}^n(B)}$$
 and note $G' \subset F_p$, $p = (\rho'\rho)^{-1}$.

Case 1: $\omega_1(G^{bd}) \geq \delta \, \omega_1(B)$.

- $G' := \{x \in G^{bd} : \Theta_{\omega_1|_G}^n(x,r) \ge \rho' \Theta_{\omega_1}^n(x,r), \forall r \in (0,2r(B))\}.$
- Besicovitch covering, for ρ' small enough, $\omega_1(G') \ge \frac{1}{2}\omega_1(G^{bd}) \ge \frac{\delta}{2}\omega_1(B).$
- For $x \in G'$, $\Theta_{\omega_1|_G}^n(x, r) \ge \rho' \rho \Theta_{\omega_1|_G}^n(B)$.

• Set
$$\nu = \frac{\omega_1|_G}{\Theta_{\omega_1|_G}^n(B)}$$
 and note $G' \subset F_p$, $p = (\rho'\rho)^{-1}$.

• By Theorem of Nazarov, Tolsa and Volberg we can find a uniformly rectifiable measure σ so that $\sigma|_{F_{p,q}} = \nu|_{F_{p,q}}$.

Case 1: $\omega_1(G^{bd}) \geq \delta \, \omega_1(B)$.

- $G' := \{x \in G^{bd} : \Theta_{\omega_1|_G}^n(x,r) \ge \rho' \Theta_{\omega_1}^n(x,r), \forall r \in (0,2r(B))\}.$
- Besicovitch covering, for ρ' small enough, $\omega_1(G') \ge \frac{1}{2}\omega_1(G^{bd}) \ge \frac{\delta}{2}\omega_1(B).$
- For $x \in G'$, $\Theta_{\omega_1|_G}^n(x, r) \ge \rho' \rho \Theta_{\omega_1|_G}^n(B)$.

• Set
$$\nu = \frac{\omega_1|_G}{\Theta_{\omega_1|_G}^n(B)}$$
 and note $G' \subset F_p$, $p = (\rho'\rho)^{-1}$.

 By Theorem of Nazarov, Tolsa and Volberg we can find a uniformly rectifiable measure *σ* so that *σ*|<sub>*F_{p,g}* = *ν*|<sub>*F_{p,g}*.
</sub></sub>

•
$$\nu(F_{\rho,q}) \geq \frac{1}{2}\nu(F_{\rho}) \geq \frac{1}{2}\nu(G') = \frac{\omega_1(G')}{\Theta_{\omega_1|_G}^n(B)} \geq \frac{\delta}{4}\frac{\omega_1(B)}{\Theta_{\omega_1|_G}^n(B)} \geq \frac{\delta}{4}\nu(B).$$
Case 1: $\omega_1(G^{bd}) \geq \delta \, \omega_1(B)$.

- $G' := \{x \in G^{bd} : \Theta_{\omega_1|_G}^n(x,r) \ge \rho' \Theta_{\omega_1}^n(x,r), \forall r \in (0,2r(B))\}.$
- Besicovitch covering, for ρ' small enough, $\omega_1(G') \ge \frac{1}{2}\omega_1(G^{bd}) \ge \frac{\delta}{2}\omega_1(B).$
- For $x \in G'$, $\Theta_{\omega_1|_G}^n(x, r) \ge \rho' \rho \Theta_{\omega_1|_G}^n(B)$.

• Set
$$\nu = \frac{\omega_1|_G}{\Theta_{\omega_1|_G}^n(B)}$$
 and note $G' \subset F_p$, $p = (\rho'\rho)^{-1}$.

 By Theorem of Nazarov, Tolsa and Volberg we can find a uniformly rectifiable measure *σ* so that *σ*|<sub>*F_{p,g}* = *ν*|<sub>*F_{p,g}*.
</sub></sub>

•
$$\nu(F_{\rho,q}) \geq \frac{1}{2}\nu(F_{\rho}) \geq \frac{1}{2}\nu(G') = \frac{\omega_1(G')}{\Theta_{\omega_1|_G}^n(B)} \geq \frac{\delta}{4}\frac{\omega_1(B)}{\Theta_{\omega_1|_G}^n(B)} \geq \frac{\delta}{4}\nu(B).$$

• The result now follows.

イロト イヨト イヨト イヨト 三日

Let μ be Radon and $B \subset \mathbb{R}^{n+1}$ a ball with $\mu(B) > 0$ s.t.

(a) For some constant $C_0 > 0$, $P_{\mu}(B) \leq C_0 \Theta_{\mu}(B)$.

Let μ be Radon and $B \subset \mathbb{R}^{n+1}$ a ball with $\mu(B) > 0$ s.t.

(a) For some constant $C_0 > 0$, $P_{\mu}(B) \leq C_0 \Theta_{\mu}(B)$.

(b) There is some *n*-plane *L* passing through the center of *B* such that, for some constant 0 < δ ≪ 1, β^L_{μ,1}(*B*) ≤ δ Θ_μ(*B*).

Let μ be Radon and $B \subset \mathbb{R}^{n+1}$ a ball with $\mu(B) > 0$ s.t.

(a) For some constant $C_0 > 0$, $P_{\mu}(B) \leq C_0 \Theta_{\mu}(B)$.

- (b) There is some *n*-plane *L* passing through the center of *B* such that, for some constant 0 < δ ≪ 1, β^L_{μ,1}(*B*) ≤ δ Θ_μ(*B*).
- (c) For some constant $C_1 > 0$, there is $G_B \subset B$ such that

$$\sup_{0 < r \leq 2r(B)} \frac{\mu(B(x,r))}{r^n} + \mathcal{R}_*(\chi_{2B}\,\mu)(x) \leq C_1\,\Theta_\mu(B), \text{ for all } x \in G_B$$

and $\mu(B \setminus G_B) \leq \delta \mu(B)$.

イロト イヨト イヨト イヨト 三日

Let μ be Radon and $B \subset \mathbb{R}^{n+1}$ a ball with $\mu(B) > 0$ s.t.

- (a) For some constant $C_0 > 0$, $P_{\mu}(B) \leq C_0 \Theta_{\mu}(B)$.
- (b) There is some *n*-plane *L* passing through the center of *B* such that, for some constant 0 < δ ≪ 1, β^L_{μ,1}(*B*) ≤ δ Θ_μ(*B*).
- (c) For some constant $C_1 > 0$, there is $G_B \subset B$ such that

$$\sup_{0 < r \leq 2r(B)} \frac{\mu(B(x,r))}{r^n} + \mathcal{R}_*(\chi_{2B}\,\mu)(x) \leq C_1\,\Theta_\mu(B), \text{ for all } x \in G_B$$

and $\mu(B \setminus G_B) \le \delta \mu(B)$. (d) For some constant $0 < \tau \ll 1$,

$$\int_{G_B} |\mathcal{R}\mu(x) - m_{\mu,G_B}(\mathcal{R}\mu)|^2 \, d\mu(x) \leq \tau \, \Theta_\mu(B)^2 \mu(B).$$

If δ, τ small enough, there is a uniformly *n*-rectifiable set $\Gamma \subset \mathbb{R}^{n+1}$ such that $\mu(G_B \cap \Gamma) \geq \theta \, \mu(B)$.

▲ロト▲御ト▲恵ト▲恵ト 恵 めんぐ

Case 2: $\omega_1(G^{bd}) < \delta \omega_1(B)$.

• For $\delta < \varepsilon$, by the weak- A_{∞} property, $\omega_2(G^{bd}) < \varepsilon' \omega_2(B)$.

Case 2: $\omega_1(G^{bd}) < \delta \, \omega_1(B)$.

- For δ < ε, by the weak-A_∞ property, ω₂(G^{bd}) < ε'ω₂(B).
- $\omega_2(B \setminus G) \leq 2\varepsilon' \omega_2(B) \Rightarrow \omega_2(B \setminus G^{sd}) \leq 3\varepsilon' \omega_2(B).$

Case 2: $\omega_1(G^{bd}) < \delta \, \omega_1(B)$.

- For δ < ε, by the weak-A_∞ property, ω₂(G^{bd}) < ε'ω₂(B).
- $\omega_2(B \setminus G) \leq 2\varepsilon' \omega_2(B) \Rightarrow \omega_2(B \setminus G^{sd}) \leq 3\varepsilon' \omega_2(B).$
- Have shown that: $P_{\gamma,\omega_2}(B) \lesssim \Theta_{\omega_2}(B)$, for any $\gamma \in [0, 1]$, $\beta_{\omega_2,1}(B) < \eta \Theta_{\omega_2}(B)$, and $r(B) \lesssim \tau |x_2 c_B|$.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Case 2: $\omega_1(G^{bd}) < \delta \, \omega_1(B)$.

- For δ < ε, by the weak-A_∞ property, ω₂(G^{bd}) < ε'ω₂(B).
- $\omega_2(B \setminus G) \leq 2\varepsilon' \omega_2(B) \Rightarrow \omega_2(B \setminus G^{sd}) \leq 3\varepsilon' \omega_2(B).$
- Have shown that: $P_{\gamma,\omega_2}(B) \lesssim \Theta_{\omega_2}(B)$, for any $\gamma \in [0, 1]$, $\beta_{\omega_2,1}(B) < \eta \Theta_{\omega_2}(B)$, and $r(B) \lesssim \tau |x_2 c_B|$.
- It is enough to prove (c) and (d) in Girela-Sarrión and Tolsa for μ = ω₂ and G_B = G^{sd}.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof of (c)-bounded density of ω_i

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●三 のへで

Proof of (c)–bounded density of ω_i

Main ingredient: The Alt-Caffarelli-Friedman monotonicity formula applied to Green functions $G_1(\cdot, p_1)$ and $G_2(\cdot, p_2)$.

Proof of (c)–bounded density of ω_i

Main ingredient: The Alt-Caffarelli-Friedman monotonicity formula applied to Green functions $G_1(\cdot, p_1)$ and $G_2(\cdot, p_2)$.

Theorem

Let $B(x, R) \subset \mathbb{R}^{n+1}$, and let $u_1, u_2 \in W^{1,2}(B(x, R)) \cap C(B(x, R))$ be nonnegative subharmonic functions. Suppose that $u_1(x) = u_2(x) = 0$ and that $u_1 \cdot u_2 \equiv 0$. Set

$$\gamma(x,r) = \left(\frac{1}{r^2} \int_{B(x,r)} \frac{|\nabla u_1(y)|^2}{|y-x|^{n-1}} dy\right) \cdot \left(\frac{1}{r^2} \int_{B(x,r)} \frac{|\nabla u_2(y)|^2}{|y-x|^{n-1}} dy\right).$$
(4)

Then $\gamma(x, r)$ is a non-decreasing function of $r \in (0, R)$ and $\gamma(x, r) < \infty$ for all $r \in (0, R)$. That is,

$$\gamma(x, r_1) \leq \gamma(x, r_2) < \infty \quad \text{for} \quad 0 < r_1 \leq r_2 < R.$$

85/90

(5)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●三 のへで

$$\frac{\omega_i(B(\xi,r))}{r^n} \lesssim \left(\frac{1}{r^2} \int_{B(\xi,2r)} \frac{|\nabla u_i(y)|^2}{|y-\xi|^{n-1}} dy\right)^{\frac{1}{2}} \lesssim \left(\frac{1}{r^{n+3}} \int_{B(\xi,4r)} |u_i|^2\right)^{\frac{1}{2}}$$

▲□▶▲□▶▲□▶▲□▶ □ の�?

$$\frac{\omega_i(B(\xi,r))}{r^n} \lesssim \left(\frac{1}{r^2} \int_{B(\xi,2r)} \frac{|\nabla u_i(y)|^2}{|y-\xi|^{n-1}} dy\right)^{\frac{1}{2}} \lesssim \left(\frac{1}{r^{n+3}} \int_{B(\xi,4r)} |u_i|^2\right)^{\frac{1}{2}}$$

and also

$$\left(\frac{1}{r^{n+3}}\int_{B(\xi,\rho)\cap\Omega_i}|u_i|^2\right)^{\frac{1}{2}}\lesssim \frac{\omega_i(B(\xi,C_1\rho))}{\rho^n}.$$

88/90

3

< □ > < @ > < E > < E >

$$\frac{\omega_i(B(\xi,r))}{r^n} \lesssim \left(\frac{1}{r^2} \int_{B(\xi,2r)} \frac{|\nabla u_i(y)|^2}{|y-\xi|^{n-1}} dy\right)^{\frac{1}{2}} \lesssim \left(\frac{1}{r^{n+3}} \int_{B(\xi,4r)} |u_i|^2\right)^{\frac{1}{2}}$$

and also

$$\left(\frac{1}{r^{n+3}}\int_{B(\xi,\rho)\cap\Omega_i}|u_i|^2\right)^{\frac{1}{2}}\lesssim \frac{\omega_i(B(\xi,C_1\rho))}{\rho^n}.$$

Thus, by mutual absolute continuity, for $r < R/(8C_1)$

$$\frac{\omega_i(\boldsymbol{B}(\xi,r))}{r^n} \lesssim \gamma(\xi,2r)^{1/2} \leq \gamma(\xi,R/2C_1)^{1/2} \lesssim \frac{\omega_i(\boldsymbol{B}(\xi,R))}{R^n}$$

89/90

・ロト ・部ト ・ヨト ・ヨト ・ヨ

Thank you!!! $\varepsilon v \chi \alpha \rho \iota \sigma \tau \omega \pi o \lambda v$!!! Muchas gracias!!!