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Definition

A Borel set E c RY is n-rectifiable if there exist E; ¢ R” and
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Geometry of the boundary 02

A Borel set E c RY is n-rectifiable if there exist E; ¢ R” and
f; : E; — RY Lipschitz so that #"(E\ >4 fi(E;)) = 0.

v

E c RYis n-AD-regular if Vx € E and Vr € (0, diam (E)).

Cy ' r" < H"(B(x,r)NE) < Cor".

The set E ¢ R is uniformly n-rectifiable if
@ E is n-AD-regular

@ J6,M > 0s.t. Vx € E and Vr € (0,diam (E))
3 9gx.r : Ba(0,r) C R” — RY an M-Lipschitz mapping s.t.

H"(E N B(x,r) N gx.r(Bn(0,r))) > 6r".

y
12/90



Uniform Rectifiability and Singular Integral Operators

13/90



Uniform Rectifiability and Singular Integral Operators

Let K : R\ {0} — R be a kernel s.t.

14/90



Uniform Rectifiability and Singular Integral Operators

Let K : R\ {0} — R be a kernel s.t.
@ K(—x)=—K(x) (i.e., odd)

15/90



Uniform Rectifiability and Singular Integral Operators

Let K : R\ {0} — R be a kernel s.t.
@ K(—x)=—K(x) (i.e., odd)
@ K(Ax) = A7"K(x) (i.e. homogeneous of degree —n)

16/90



Uniform Rectifiability and Singular Integral Operators

Let K : R\ {0} — R be a kernel s.t.
@ K(—x)=—K(x) (i.e., odd)
@ K(A\x) = A""K(x) (i.e. homogeneous of degree —n)
@ IM e Ns.t. |VK(x)| $n C() [x|7", forj e {1,...,M}.

17/90



Uniform Rectifiability and Singular Integral Operators

Let K : R\ {0} — R be a kernel s.t.

@ K(—x)=—K(x) (i.e., odd)

@ K(A\x) = A""K(x) (i.e. homogeneous of degree —n)

@ IM e Ns.t. |VK(x)| $n C() [x|7", forj e {1,...,M}.
For n-AD-regular measures . consider SIO of the form

T uf(X) = / K(x — y)f(y)du(y).

18/90



Uniform Rectifiability and Singular Integral Operators

Let K : R\ {0} — R be a kernel s.t.

@ K(—x)=—K(x) (i.e., odd)

@ K(A\x) = A""K(x) (i.e. homogeneous of degree —n)

@ IM e Ns.t. |VK(x)| $n C() [x|7", forj e {1,...,M}.
For n-AD-regular measures . consider SIO of the form

T uf(X) = / K(x — y)f(y)du(y).

Theorem (David-Semmes)

w is uniformly n-rectifiable <
for all kernels K as above, Tk, : L?(u) — L2(y) is bounded.
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Uniform Rectifiability and Riesz Transform

@ Riesz kernel: K(x) = M%, x #0.
@ Riesz transform: R ,f(x) = [ K(x — y)f(y) du(y).
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Uniform Rectifiability and Riesz Transform

@ Riesz kernel: K(x) = M%, x #0.
@ Riesz transform: R ,f(x) = [ K(x — y)f(y) du(y).

Question (David-Semmes Problem)

Let 1. be an n-AD regular measure in R,
Ry : [2(p) — L2(p) is bounded = 11 is uniformly n-rectifiable.

@ n =1, Mattila, Melnikov, and Verdera, '96.
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Uniform Rectifiability and Riesz Transform

@ Riesz kernel: K(x) = M%, x #0.
@ Riesz transform: R ,f(x) = [ K(x — y)f(y) du(y).

Question (David-Semmes Problem)

Let 1. be an n-AD regular measure in R,
Ry : [2(p) — L2(p) is bounded = 11 is uniformly n-rectifiable.

@ n =1, Mattila, Melnikov, and Verdera, '96.
@ n=d — 1, Nazarov, Tolsa and Volberg, '14.
@ 2< n<d-2still OPEN!
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Riesz transform and harmonic measure

Assume we are in R"*1, n > 2. Denote by
@ £(x,y) = cn|x — y|'~" the fundamental solution for A.
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Riesz transform and harmonic measure

Assume we are in R"*1, n > 2. Denote by
@ £(x,y) = cn|x — y|'~" the fundamental solution for A.
@ G(-,-) the Green function in Q

G(x,p) = £(x — p) - / Ex—y)doP(y). (1)

@ Note that the Riesz kernel is given by
K(x) = ¢ VE(X).

@ Hence, differentiating both sides of (1),

VG(x.p) = VE(x—p) - [ K(x~y)du?(y)
= VE(x — p) — RwP(x).

So the Riesz transform is naturally connected to harmonic
measure and Green function.
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“Qualitative” one-phase and two-phase free boundary

problems (FBP) for harmonic measure
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“Qualitative” one-phase and two-phase free boundary
problems (FBP) for harmonic measure

Theorem ( Azzam, Hofmann, Martell, Mayboroda, M., Tolsa,
Volberg, '15)

LetQ c R™! js a domain, E c 9Q with H"(E) < co.
wlg < H"|g < w|g = E is n-rectifiable.
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“Qualitative” one-phase and two-phase free boundary
problems (FBP) for harmonic measure

Theorem ( Azzam, Hofmann, Martell, Mayboroda, M., Tolsa,
Volberg, '15)

LetQ c R™! js a domain, E c 9Q with H"(E) < co.
wlg < H"|g < w|g = E is n-rectifiable.

Theorem ( Azzam, M., Tolsa, '17, & Azzam, M., Tolsa, Volberg,

"17)

Let Q4,Q, c R™ are disjoint domains and let E C Q1 N 0.
w! < w? < w' on E = 3 n-rectifiable F c E s.t.

0 WI(E\F)=w?(E\F)=0
o uwww «H"<w!' onF.
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“Quantitative” one-phase (FBP) for w
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“Quantitative” one-phase (FBP) for w

Theorem (Hofmann, Martell, ’14 and Hofmann, Martell,
Uriarte-Tuero, 14 (proved in ’12))

IfQ c R™1" js 1-NTA domain with AD-regular boundary, then
w*B € w — Ax(B) & 092 € UR, for some corkscrew point
Xg € cBN Q.

Theorem (Azzam, Hofmann, Martell, Nystrém, Toro ’17 (proved
in'14))

IfQ c R™' js 1-NTA domain with UR boundary, then it is NTA
= w € Ax.

Theorem (Hofmann, Martell, ’15—Hofmann, Le, Martell,

Nystrom, '17)

LetQ c R™' open with the interior corkscrew condition and
ADR boundary. If w < o and for every B, 3 xg Corkscrew point
inB, [ognq(k*8)7do < o B)'=9, then 0 is uniformly rectifiable.
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“Quantitative” one-phase (FBP) for w

Theorem (M., Tolsa, '15)

Assume that Q ¢ R s open and 1. is a measure s.t.
w(B(x,r) < r" and supp(u) C 09Q.

IfJe, e € (0,1) s.t.

Vu-doubling ball B centered at supp p with

diam (B) < diam (supp p),

dxg € kBN Q s.t..forany E C B,

if p(E)<ewB), then w*B(E) <& w*(B).

Then the Riesz transform R, : L2(u) — L?(u) is bounded.
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Characterization of A., condition for harmonic

measure
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Characterization of A., condition for harmonic

measure

2 is semiuniform domain if for every x € Q and y € 99, there
exists a rectifiable curve v C Q connecting x and y such that

@ Amin({(x, z),4(z,y)) < dist(z,00)
@ /() < C|x — y| (bounding turning).
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Characterization of A., condition for harmonic

measure

2 is semiuniform domain if for every x € Q and y € 99, there
exists a rectifiable curve v C Q connecting x and y such that

@ Amin({(x, z),4(z,y)) < dist(z,00)
@ /() < C|x — y| (bounding turning).

Theorem (Azzam, ’17)

IfQ c R™" js a domain with AD-regular boundary then the
following are equivalent:

@ Q is semi-uniform with UR boundary,
@ Q has very big pieces of interior chord-arc subdomains,
o we A
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Characterization of weak-A., condition for harmonic

measure
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Characterization of weak-A., condition for harmonic
measure

Definition

Given x € Q, y € 09, and A > 0, a A-carrot curve (or just
carrot curve) from x to y is a curve v C QU {y} with end-points
x and y such that 6q(z) := dist(z, Q) > s H'(y(y, 2)) for all

z € v, where 7y(y, z) is the arc in v between y and z.
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Characterization of weak-A., condition for harmonic
measure

Definition

Given x € Q, y € 09, and A > 0, a A-carrot curve (or just
carrot curve) from x to y is a curve v C QU {y} with end-points
x and y such that 6q(z) := dist(z, Q) > s H'(y(y, 2)) for all

z € v, where 7y(y, z) is the arc in v between y and z.

Definition

Q satisfies the weak local John condition (with parameters
A, 0, A) if there are constants A\, 0 € (0,1) and A > 2 such that
for every x € Q there is a Borel subset F C B(x, Adq(x)) N 0R)
with H"(F) > 0 H"(B(x, Ndq(x)) N 9Q) such that every y € F
can be joined to x by a A-carrot curve.
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Characterization of weak-A., condition for harmonic

measure
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Characterization of weak-A., condition for harmonic
measure

Theorem (Hofmann, Martell, ’17-18 and Azzam, M., Tolsa, '18)

LetQ c R™', n> 2, be an open set with n-AD-regular
boundary satisfying the corkscrew condition. Then the following
are equivalent:
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Characterization of weak-A., condition for harmonic
measure

Theorem (Hofmann, Martell, ’17-18 and Azzam, M., Tolsa, '18)

LetQ c R™', n> 2, be an open set with n-AD-regular
boundary satisfying the corkscrew condition. Then the following
are equivalent:

@ harmonic measure for Q0 is in weak-Ax

@ 09 is uniformly n-rectifiable and Q) satisfies the weak local
John condition

@ Q has big pieces of interior chord-arc subdomains.
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“Quantitative” two-phase (FBP) for w

Theorem (Azzam, M., Tolsa, 2017)

Let Qy,Q C R™ disjoint CDC domains and ' be harmonic
measures of Q; with poles p; € Q;, i=1,2. Set
F =001 N0 # @.
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“Quantitative” two-phase (FBP) for w

Theorem (Azzam, M., Tolsa, 2017)

Let Qy,Q C R™ disjoint CDC domains and ' be harmonic
measures of Q; with poles p; € Q;, i=1,2. Set

F :=0Q1 N 00 # @. Suppose e,&’ € (0,1) s.t. if B ball
centered at F with diam (B) < min(diam (01 ), diam (095)),
Ix € 1BNQ; fori=1,2, s.t.: VE C B,

if WA(E)<ew(B), then wP(E)<cwl(B). (2)
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Theorem (Azzam, M., Tolsa, 2017)

Let Qy,Q C R™ disjoint CDC domains and ' be harmonic
measures of Q; with poles p; € Q;, i=1,2. Set

F :=0Q1 N 00 # @. Suppose e,&’ € (0,1) s.t. if B ball
centered at F with diam (B) < min(diam (01 ), diam (095)),
Ix € 1BNQ; fori=1,2, s.t.: VE C B,

if WA(E)<ew(B), then wP(E)<cwl(B). (2)

If ¢’ is small enough (depending only on n and the CDC
constant), then 30, € (0,1) and a uniformly rectifiable set
Y5 C R™1 such that

wf"(ZBﬂFﬂB)ZH,-, i=1,2.
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“Quantitative” two-phase (FBP) for w

Theorem (Azzam, M., Tolsa, 2017)

Let Qy,Q C R™ disjoint CDC domains and ' be harmonic
measures of Q; with poles p; € Q;, i=1,2. Set

F :=0Q1 N 00 # @. Suppose e,&’ € (0,1) s.t. if B ball
centered at F with diam (B) < min(diam (01 ), diam (095)),
Ix € 1BNQ; fori=1,2, s.t.: VE C B,

if WA(E)<ew(B), then wP(E)<cwl(B). (2)

If ¢’ is small enough (depending only on n and the CDC
constant), then 30, € (0,1) and a uniformly rectifiable set
Y5 C R™1 such that

wf"(ZBﬂFﬂB)ZH,-, i=1,2.

Moreover, there is ¢ > 0 so that if x; is also corkscrew points
for 1B, then

HY(ZgN FNB) > cr(B)". (3)
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o Density of a measure: ©7(B) = £}
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Preliminary notation

@ Density of a measure: ©/)(B) = rFE(E?))n-
o P, u(B) =302 0N(2B),

@ Jones’ 5 function:
For a measure p, £ € supp . and r > 0, we define

. o1 di L
B (&.r) 1= inf 5,4 (B, 1)) = 'Tfr”/B(f,r) ISt(rX)dF‘(X)

where the infimum is over all n-dimensional planes L.
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@ Thereis a ball By C By centered at F s.t. py, po are
corkscrew points for By. (use Holder continuity on the
boundary in CDC domains + weak-A., property).
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@ Thereis a ball By C By centered at F s.t. py, po are
corkscrew points for By. (use Holder continuity on the
boundary in CDC domains + weak-A., property).

@ If Bis arbitrary ball, G C B so that wx(B\G) < 2¢'w»(B),
and

1wi1(B) _ wi(B(x,r))
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A 22(B) < w2(B(X.1)) SAw;(B) xeGO0<r<r(B).

(stopping type argument)
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Initial reductions

@ Thereis a ball By C By centered at F s.t. py, po are
corkscrew points for By. (use Holder continuity on the
boundary in CDC domains + weak-A., property).

@ If Bis arbitrary ball, G C B so that wx(B\G) < 2¢'w»(B),
and

1wi1(B) _ wi(B(x,r))

- w1(B)
A 22(B) < w2(B(X.1)) SAw;(B) xeGO0<r<r(B).

(stopping type argument)

@ Thereis a ball B, C By centered at F, with r(By) ~ r(B>)
and r(Bx) S 7|pi—¢g,|, fori=1,2, s.t. wi(Bz) 2 wi(By),
BT ., (B2) < n©[,(Bz). (compactness argument-limits of
harmonic measure-use [AMTV16])

° GM={xeG:00 (x,r)>pOf (B),vr € (0,2r(Bz))}.

e G = G\G".
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Rectifiability criterion of Nazarov, Tolsa and Volberg

Theorem

There is C > 0 depending only on n such that for all p, g > 1
the following holds. Let v be a measure supported in a ball B
such that v(B(x, r)) < r" for all x € R"*" and r > 0, and define

Fp = {x € supp(v) : v(B(x,r)) > r"/p},

n
Foq={x € Fo: v(B(x,r) N Fp) > ;q}.
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Rectifiability criterion of Nazarov, Tolsa and Volberg

Theorem

There is C > 0 depending only on n such that for all p, g > 1
the following holds. Let v be a measure supported in a ball B
such that v(B(x, r)) < r" for all x € R"*" and r > 0, and define

Fp = {x € supp(v) : v(B(x,r)) > r"/p},

n
Fog={x€ Fp:v(B(x,r)n Fp) > ,;}

IR, : L3(v) — L%(v) is bounded, then there is a = -AD regular
measure o so thato|g, , = v|f,, and R, : L?(0) —> L2(cr) is
bounded. That is, o is uniformly rectifiable.

Ifv(Fp) > d|jv| then there exists q large depending on § s.t.

v(Fpq) > 3v(Fp).
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Proof of BP(UR) in harmonic measure: Case 1
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Proof of BP(UR) in harmonic measure: Case 1

Case 1: wi(G") > 6 w(B).
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Proof of BP(UR) in harmonic measure: Case 1

Case 1: wi(G") > 6 w(B).
© G:={xeG:0" (x,r)>pOf (x,r),vre(0,2r(B))}.

wilg
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Proof of BP(UR) in harmonic measure: Case 1

Case 1: wi(G") > 6 w(B).
© G:={xeG:0" (x,r)>pOf (x,r),vre(0,2r(B))}.

wilg
@ Besicovitch covering, for o’ small enough,

w1(G’) > %w1(de) > %w1(B).
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@ Besicovitch covering, for o’ small enough,
wi(G) = Jwi(GP) > 3w (B).
® Forxe G, O] (x.r)=p'p0], (B)

wila
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Proof of BP(UR) in harmonic measure: Case 1

Case 1: wy(G") > §wq(B).
© G:={xeG:0" (x,r)>pOf (x,r),vre(0,2r(B))}.
@ Besicovitch covering, for o’ small enough,
wi(G) = Jwi(GP) > 3w (B).
® Forxe G, O] (x.r)=p'p0], (B)

wilg

—1

@ Setv — enwﬂczB) and note G' C Fp, p = (p'p)

wilg
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Proof of BP(UR) in harmonic measure: Case 1

Case 1: wy(G") > §wq(B).
© G:={xeG:0" (x,r)>pOf (x,r),vre(0,2r(B))}.
@ Besicovitch covering, for o’ small enough,
wi(G') > 3wi(GPY) > § wi(B).
® Forxe G, O] (x.r)=p'p0], (B)

wila

@ Setv = W‘?B) and note G' C Fp, p= (o' p)~ .
wilg
@ By Theorem of Nazarov, Tolsa and Volberg we can find a

uniformly rectifiable measure o so that o|g, , = v|F, -
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Proof of BP(UR) in harmonic measure: Case 1

Case 1: wy(G") > §wq(B).
© G:={xeG:0" (x,r)>pOf (x,r),vre(0,2r(B))}.
@ Besicovitch covering, for o’ small enough,
wi(G') > 3wi(GPY) > § wi(B).
® Forxe G, O] (x.r)=p'p0], (B)

wilg

@ Setv = W‘?B) and note G' C Fp, p= (o' p)~ .
wilg
@ By Theorem of Nazarov, Tolsa and Volberg we can find a

uniformly rectifiable measure o so that o|g, , = v|F, -
wy (G wq (B
® v(Fpq) = 3u(Fp) 2 51(G) = eg:fa(é) =z i@"1|(g()B) =
%I/(B).
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Proof of BP(UR) in harmonic measure: Case 1

Case 1' w1(de) > Jwi(B).
© G:={xeG:0" (x,r)>pOf (x,r),vre(0,2r(B))}.
@ Besicovitch covering, for o’ small enough,
wi(G') > 3wi(GPY) > § wi(B).
® Forxe G, O] (x.r)=p'p0], (B)

wilg

@ Setv = eni‘cis) and note G' C Fp, p= (o' p)~ .
wilg
@ By Theorem of Nazarov, Tolsa and Volberg we can find a
uniformly rectifiable measure o so that o|g, , = v|F, -

w1 (G wiy(B
® v(Fpq) = 3u(Fp) 2 51(G) = eg:fa(é) =z i@"1|(g()B) =
4v(B).

@ The result now follows.
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Rectifiability criterion of Girela-Sarrion and Tolsa

Let 11 be Radon and B ¢ R a ball with ;(B) > 0 s.t.
(a) For some constant Cy > 0, P,(B) < Cy ©,(B).
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Rectifiability criterion of Girela-Sarrion and Tolsa

Let 11 be Radon and B ¢ R a ball with ;(B) > 0 s.t.
(a) For some constant Cy > 0, P,(B) < Cy ©,(B).

(b) There is some n-plane L passing through the center of B
such that, for some constant 0 < ¢ < 1, 65,1(8) < 60,(B).
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Rectifiability criterion of Girela-Sarrion and Tolsa

Let 11 be Radon and B ¢ R a ball with ;(B) > 0 s.t.
(a) For some constant Cy > 0, P,(B) < Cy ©,(B).

(b) There is some n-plane L passing through the center of B
such that, for some constant 0 < ¢ < 1, Bﬁj(B) < 60,(B).

(c) For some constant C; > 0, there is Gg C B such that

sup M_FR*()@B w)(x) < C1©,(B), forall x € Gg
0<r<2r(B) r

and (B \ Gg) < 6 u(B).
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Rectifiability criterion of Girela-Sarrion and Tolsa

Let 11 be Radon and B ¢ R a ball with ;(B) > 0 s.t.
(a) For some constant Cy > 0, P,(B) < Cy ©,(B).

(b) There is some n-plane L passing through the center of B
such that, for some constant 0 < ¢ < 1, Bﬁj(B) < 60,(B).

(c) For some constant C; > 0, there is Gg C B such that

WBO)

sup e (x2B1)(x) < C1©,(B), forall x € Gg

0<r<2r(B)

and u(B\ Gg) < 6 u(B).
(d) For some constant0 < 7 <« 1,

/G Ru(X) — My 6y (Ri)P du(x) < 7©,,(B)u(B).

If 6, 7 small enough, there is a uniformly n-rectifiable set
I c R™" such that u(GgNT) > 6 u(B).
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Proof of BP(UR) in harmonic measure: Case 2
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Proof of BP(UR) in harmonic measure: Case 2

Case 2: wy(G") < 6 w(B).
@ For ¢ < ¢, by the weak-A,, property, wa(GP) < 'w»(B).
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Proof of BP(UR) in harmonic measure: Case 2

Case 2: wy(G") < 6 w(B).
@ For ¢ < ¢, by the weak-A,, property, wa(GP) < 'w»(B).
@ wy(B\ G) < 2¢'wp(B) = wa(B\ G%9) < 3c'wo(B).
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Proof of BP(UR) in harmonic measure: Case 2

Case 2: wy(G") < 6 w(B).
@ For ¢ < ¢, by the weak-A,, property, wa(GP) < 'w»(B).
@ wy(B\ G) < 2¢'wp(B) = wa(B\ G%9) < 3c'wo(B).
@ Have shown that: P, ,(B) < ©.,(B), forany v € [0, 1],
Bun,1(B) <1 ©,(B), and r(B) < 7 |x2 — cgl.
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Proof of BP(UR) in harmonic measure: Case 2

Case 2: wy(G") < 6 w(B).
@ For ¢ < ¢, by the weak-A,, property, wa(GP) < 'w»(B).
@ wy(B\ G) < 2¢'wp(B) = wa(B\ G%9) < 3c'wo(B).
@ Have shown that: P, ,(B) < ©.,(B), forany v € [0, 1],
Bun,1(B) <1 ©,(B), and r(B) < 7 |x2 — cgl.

@ Itis enough to prove (c) and (d) in Girela-Sarrion and
Tolsa for ;u = wp and Gg = G*°.
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Proof of (c)-bounded density of w;
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Proof of (c)-bounded density of w;

Main ingredient: The Alt-Caffarelli-Friedman monotonicity
formula applied to Green functions G (-, p1) and Ga(-, p2).
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Proof of (c)-bounded density of w;

Main ingredient: The Alt-Caffarelli-Friedman monotonicity
formula applied to Green functions G (-, p1) and Ga(-, p2).

Theorem

Let B(x,R) c R, and let uy, u» € W'2(B(x, R))n C(B(x, R))
be nonnegative subharmonic functions. Suppose that
ui(x) = u=(x) = 0 and that u; - uo = 0. Set

1 [V (y)? 1 / [Vup(y)[?
x.r == LR gy ) = 22 gy )
’Y( ) (r2 /B(x,r) ’y_X|n_1 4 re B(x,r) ‘y_ X’n_1 4
4)

Then ~(x, r) is a non-decreasing function of r € (0, R) and
v(x,r) < oo forallr € (0,R). Thatis,

v(x,r) <y(x,r) <oco for 0<nrn<rmrn<A. (5)
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Bounded density of w;
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Bounded density of w;

1

1 1
(B 1 W \° ’
B0 (1) Rt (1
r r% Jpe2n Iy — ¢ r B(¢ 4r)

87/90



Bounded density of w;

1 1
i B 9 1 V i 2 2 1 2
B0 (1] RN (1
r r% Jpe2n Iy — ¢ r B(¢ 4r)

and also

1

< 1 / |U‘|2>2 < W/(B(f, C1p))
rn+3 B R ~ n :
(§7p)mQI p
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Bounded density of w;

1 1
s (1) (s
rn r% Jpe2n Iy — ¢ res Jp(ean

and also

1

1 |U‘|2 : < W/(B(f, C1p))
rn+3 B R ~ n :
(€7p)mQI p

Thus, by mutual absolute continuity, for r < R/(8Cy)

(B, i(B(&, R
w(r(fr)) S y(6.2n)" 2 < y(¢,R/2Cy)' 2 < w(/(:f))
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Thank you!!!
svxyaptotTw mwo vl
Muchas gracias!!!



