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Harmonic measure in Ω ⊂ Rn+1

Harmonic measure of a subset E of the boundary of a domain
Ω in Rn+1, is the probability that a Brownian motion started
inside a domain first hits ∂Ω at E .

Let uf be the solution to the Dirichlet problem with data
f ∈ Cc(∂Ω).
For x ∈ Ω, f 7→ uf (x) is a linear functional
By Riesz Representation ∃ωx

Ω on ∂Ω s.t. uf (x) =
∫
∂Ω f dωx
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Geometry of the boundary ∂Ω

Definition

A Borel set E ⊂ Rd is n-rectifiable if there exist Ei ⊂ Rn and
fi : Ei → Rd Lipschitz so that Hn(E\

⋃∞
i=1 fi(Ei)) = 0.

Definition

E ⊂ Rd is n-AD-regular if ∀x ∈ E and ∀r ∈ (0, diam (E)).

C−1
0 rn ≤ Hn(B(x , r) ∩ E) ≤ C0 rn.

Definition

The set E ⊂ Rd is uniformly n-rectifiable if
E is n-AD-regular
∃ θ,M > 0 s.t. ∀x ∈ E and ∀r ∈ (0, diam (E))
∃gx ,r : Bn(0, r) ⊂ Rn → Rd an M-Lipschitz mapping s.t.

Hn(E ∩ B(x , r) ∩ gx ,r (Bn(0, r))) ≥ θrn.
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Uniform Rectifiability and Singular Integral Operators

Let K : Rd \ {0} → R be a kernel s.t.
K (−x) = −K (x) (i.e., odd)
K (λx) = λ−nK (x) (i.e. homogeneous of degree −n)
∃M ∈ N s.t. |∇jK (x)| .n C(j) |x |−n−j , for j ∈ {1, . . . ,M}.

For n-AD-regular measures µ consider SIO of the form

TK ,µf (x) =

∫
K (x − y)f (y)dµ(y).

Theorem (David-Semmes)
µ is uniformly n-rectifiable⇔
for all kernels K as above, TK ,µ : L2(µ)→ L2(µ) is bounded.
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Uniform Rectifiability and Riesz Transform

Riesz kernel: K (x) = x
|x |n+1 , x 6= 0.

Riesz transform: Rµf (x) =
∫

K (x − y)f (y) dµ(y).

Question (David-Semmes Problem)

Let µ be an n-AD regular measure in Rd .
Rµ : L2(µ)→ L2(µ) is bounded ?

=⇒ µ is uniformly n-rectifiable.

n = 1, Mattila, Melnikov, and Verdera, ’96.
n = d − 1, Nazarov, Tolsa and Volberg, ’14.
2 ≤ n ≤ d − 2 still OPEN!
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Riesz transform and harmonic measure

Assume we are in Rn+1, n ≥ 2. Denote by
E(x , y) = cn|x − y |1−n the fundamental solution for ∆.

G(·, ·) the Green function in Ω

G(x ,p) = E(x − p)−
∫
E(x − y) dωp(y). (1)

Note that the Riesz kernel is given by

K (x) = c̃n∇E(x).

Hence, differentiating both sides of (1),

∇G(x ,p) = ∇E(x − p)−
∫

K (x − y)dωp(y)

= ∇E(x − p)−Rωp(x).

So the Riesz transform is naturally connected to harmonic
measure and Green function.
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“Qualitative” one-phase and two-phase free boundary
problems (FBP) for harmonic measure

Theorem ( Azzam, Hofmann, Martell, Mayboroda, M., Tolsa,
Volberg, ’15)

Let Ω ⊂ Rn+1 is a domain, E ⊂ ∂Ω with Hn(E) <∞.
ω|E � Hn|E � ω|E =⇒ E is n-rectifiable.

Theorem ( Azzam, M., Tolsa, ’17, & Azzam, M., Tolsa, Volberg,
’17)

Let Ω1,Ω2 ⊂ Rn+1 are disjoint domains and let E ⊂ ∂Ω1 ∩ ∂Ω2.
ω1 � ω2 � ω1 on E ⇒ ∃ n-rectifiable F ⊂ E s.t.

ω1(E \ F ) = ω2(E \ F ) = 0
ω1 � ω2 � Hn � ω1 on F.
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“Quantitative” one-phase (FBP) for ω

Theorem (Hofmann, Martell, ’14 and Hofmann, Martell,
Uriarte-Tuero, ’14 (proved in ’12))

If Ω ⊂ Rn+1 is 1-NTA domain with AD-regular boundary, then
ωxB ∈ w − A∞(B)⇔ ∂Ω ∈ UR, for some corkscrew point
xB ∈ cB ∩ Ω.

Theorem (Azzam, Hofmann, Martell, Nyström, Toro ’17 (proved
in ’14))

If Ω ⊂ Rn+1 is 1-NTA domain with UR boundary, then it is NTA
⇒ ω ∈ A∞.

Theorem (Hofmann, Martell, ’15–Hofmann, Le, Martell,
Nystrom, ’17)

Let Ω ⊂ Rn+1 open with the interior corkscrew condition and
ADR boundary. If ω � σ and for every B, ∃ xB Corkscrew point
in B,

∫
2B∩Ω(kxB )q dσ . σ(B)1−q, then ∂Ω is uniformly rectifiable.
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“Quantitative” one-phase (FBP) for ω

Theorem (M., Tolsa, ’15)

Assume that Ω ⊂ Rn+1 is open and µ is a measure s.t.
µ(B(x , r) . rn and supp(µ) ⊂ ∂Ω.
If ∃ ε, ε′ ∈ (0,1) s.t.
∀µ-doubling ball B centered at suppµ with
diam (B) ≤ diam (suppµ),
∃ xB ∈ κB ∩ Ω s.t.:for any E ⊂ B,
if µ(E) ≤ ε µ(B), then ωxB (E) ≤ ε′ ωxB (B).
Then the Riesz transform Rµ : L2(µ)→ L2(µ) is bounded.
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Characterization of A∞ condition for harmonic
measure

Ω is semiuniform domain if for every x ∈ Ω and y ∈ ∂Ω, there
exists a rectifiable curve γ ⊂ Ω connecting x and y such that

λmin(`(x , z), `(z, y)) ≤ dist(z, ∂Ω)

`(γ) ≤ C|x − y | (bounding turning).

Theorem (Azzam, ’17)

If Ω ⊂ Rn+1 is a domain with AD-regular boundary then the
following are equivalent:

Ω is semi-uniform with UR boundary,
Ω has very big pieces of interior chord-arc subdomains,
ω ∈ A∞.

35 / 90



Characterization of A∞ condition for harmonic
measure

Ω is semiuniform domain if for every x ∈ Ω and y ∈ ∂Ω, there
exists a rectifiable curve γ ⊂ Ω connecting x and y such that

λmin(`(x , z), `(z, y)) ≤ dist(z, ∂Ω)

`(γ) ≤ C|x − y | (bounding turning).

Theorem (Azzam, ’17)

If Ω ⊂ Rn+1 is a domain with AD-regular boundary then the
following are equivalent:

Ω is semi-uniform with UR boundary,
Ω has very big pieces of interior chord-arc subdomains,
ω ∈ A∞.

36 / 90



Characterization of A∞ condition for harmonic
measure

Ω is semiuniform domain if for every x ∈ Ω and y ∈ ∂Ω, there
exists a rectifiable curve γ ⊂ Ω connecting x and y such that

λmin(`(x , z), `(z, y)) ≤ dist(z, ∂Ω)

`(γ) ≤ C|x − y | (bounding turning).

Theorem (Azzam, ’17)

If Ω ⊂ Rn+1 is a domain with AD-regular boundary then the
following are equivalent:

Ω is semi-uniform with UR boundary,
Ω has very big pieces of interior chord-arc subdomains,
ω ∈ A∞.

37 / 90



Characterization of A∞ condition for harmonic
measure

Ω is semiuniform domain if for every x ∈ Ω and y ∈ ∂Ω, there
exists a rectifiable curve γ ⊂ Ω connecting x and y such that

λmin(`(x , z), `(z, y)) ≤ dist(z, ∂Ω)

`(γ) ≤ C|x − y | (bounding turning).

Theorem (Azzam, ’17)

If Ω ⊂ Rn+1 is a domain with AD-regular boundary then the
following are equivalent:

Ω is semi-uniform with UR boundary,

Ω has very big pieces of interior chord-arc subdomains,
ω ∈ A∞.

38 / 90



Characterization of A∞ condition for harmonic
measure

Ω is semiuniform domain if for every x ∈ Ω and y ∈ ∂Ω, there
exists a rectifiable curve γ ⊂ Ω connecting x and y such that

λmin(`(x , z), `(z, y)) ≤ dist(z, ∂Ω)

`(γ) ≤ C|x − y | (bounding turning).

Theorem (Azzam, ’17)

If Ω ⊂ Rn+1 is a domain with AD-regular boundary then the
following are equivalent:

Ω is semi-uniform with UR boundary,
Ω has very big pieces of interior chord-arc subdomains,

ω ∈ A∞.

39 / 90



Characterization of A∞ condition for harmonic
measure

Ω is semiuniform domain if for every x ∈ Ω and y ∈ ∂Ω, there
exists a rectifiable curve γ ⊂ Ω connecting x and y such that

λmin(`(x , z), `(z, y)) ≤ dist(z, ∂Ω)

`(γ) ≤ C|x − y | (bounding turning).

Theorem (Azzam, ’17)

If Ω ⊂ Rn+1 is a domain with AD-regular boundary then the
following are equivalent:

Ω is semi-uniform with UR boundary,
Ω has very big pieces of interior chord-arc subdomains,
ω ∈ A∞.

40 / 90



Characterization of weak-A∞ condition for harmonic
measure

Definition
Given x ∈ Ω, y ∈ ∂Ω, and λ > 0, a λ-carrot curve (or just
carrot curve) from x to y is a curve γ ⊂ Ω ∪ {y} with end-points
x and y such that δΩ(z) := dist(z, ∂Ω) ≥ κH1(γ(y , z)) for all
z ∈ γ, where γ(y , z) is the arc in γ between y and z.

Definition
Ω satisfies the weak local John condition (with parameters
λ, θ,Λ) if there are constants λ, θ ∈ (0,1) and Λ ≥ 2 such that
for every x ∈ Ω there is a Borel subset F ⊂ B(x ,ΛδΩ(x)) ∩ ∂Ω)
with Hn(F ) ≥ θHn(B(x ,ΛδΩ(x)) ∩ ∂Ω) such that every y ∈ F
can be joined to x by a λ-carrot curve.
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Characterization of weak-A∞ condition for harmonic
measure

Theorem (Hofmann, Martell, ’17-18 and Azzam, M., Tolsa, ’18)

Let Ω ⊂ Rn+1, n ≥ 2, be an open set with n-AD-regular
boundary satisfying the corkscrew condition. Then the following
are equivalent:

harmonic measure for Ω is in weak-A∞
∂Ω is uniformly n-rectifiable and Ω satisfies the weak local
John condition
Ω has big pieces of interior chord-arc subdomains.
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“Quantitative” two-phase (FBP) for ω

Theorem (Azzam, M., Tolsa, 2017)

Let Ω1,Ω2 ( Rn+1 disjoint CDC domains and ωpi
i be harmonic

measures of Ωi with poles pi ∈ Ωi , i=1,2. Set
F := ∂Ω1 ∩ ∂Ω2 6= ∅. Suppose ∃ ε, ε′ ∈ (0,1) s.t. if B ball
centered at F with diam (B) ≤ min(diam (∂Ω1), diam (∂Ω2)),
∃ xi ∈ 1

4B ∩ Ωi for i = 1,2, s.t.: ∀E ⊂ B,

if ωx1
1 (E) ≤ ε ωx1

1 (B), then ωx2
2 (E) ≤ ε′ ωx2

2 (B). (2)

If ε′ is small enough (depending only on n and the CDC
constant), then ∃ θi ∈ (0,1) and a uniformly rectifiable set
ΣB ⊂ Rn+1 such that

ωxi
i (ΣB ∩ F ∩ B) ≥ θi , i = 1,2.

Moreover, there is c > 0 so that if x1 is also corkscrew points
for 1

4B, then
Hd (ΣB ∩ F ∩ B) ≥ cr(B)n. (3)
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Preliminary notation

Density of a measure: Θn
µ(B) = µ(B)

r(B)n .

Pγ,µ(B) =
∑

j≥0 2−jγ Θn
µ(2jB),

Jones’ β function:
For a measure µ, ξ ∈ suppµ and r > 0, we define

βµ,1(ξ, r) := inf
L
βL
µ,1(B(ξ, r)) := inf

L

1
rn

∫
B(ξ,r)

dist(x ,L)

r
dµ(x)

where the infimum is over all n-dimensional planes L.
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Initial reductions

There is a ball B1 ⊂ B0 centered at F s.t. p1,p2 are
corkscrew points for B1. (use Hölder continuity on the
boundary in CDC domains + weak-Ã∞ property).
If B is arbitrary ball, G ⊂ B so that ω2(B\G) < 2ε′ω2(B),
and

A−1ω1(B)

ω2(B)
≤ ω1(B(x , r))

ω2(B(x , r))
≤ A

ω1(B)

ω2(B)
x ∈ G,0 < r < r(B).

(stopping type argument)
There is a ball B2 ⊂ B1 centered at F , with r(B1) ≈ r(B2)
and r(B2) . τ |pi − cB2 |, for i = 1,2, s.t. ωi(B2) & ωi(B1),
βn

1,ω2
(B2) < ηΘn

ω2
(B2). (compactness argument-limits of

harmonic measure-use [AMTV16])
Gbd = {x ∈ G : Θn

ω1
(x , r) ≥ ρΘn

ω1
(B2),∀r ∈ (0,2r(B2))}.

Gsd = G\Gbd .
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boundary in CDC domains + weak-Ã∞ property).
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If B is arbitrary ball, G ⊂ B so that ω2(B\G) < 2ε′ω2(B),
and

A−1ω1(B)

ω2(B)
≤ ω1(B(x , r))

ω2(B(x , r))
≤ A

ω1(B)

ω2(B)
x ∈ G,0 < r < r(B).

(stopping type argument)

There is a ball B2 ⊂ B1 centered at F , with r(B1) ≈ r(B2)
and r(B2) . τ |pi − cB2 |, for i = 1,2, s.t. ωi(B2) & ωi(B1),
βn

1,ω2
(B2) < ηΘn

ω2
(B2). (compactness argument-limits of

harmonic measure-use [AMTV16])
Gbd = {x ∈ G : Θn

ω1
(x , r) ≥ ρΘn

ω1
(B2),∀r ∈ (0,2r(B2))}.

Gsd = G\Gbd .

59 / 90



Initial reductions

There is a ball B1 ⊂ B0 centered at F s.t. p1,p2 are
corkscrew points for B1. (use Hölder continuity on the
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Rectifiability criterion of Nazarov, Tolsa and Volberg

Theorem

There is C > 0 depending only on n such that for all p,q > 1
the following holds. Let ν be a measure supported in a ball B
such that ν(B(x , r)) ≤ rn for all x ∈ Rn+1 and r > 0, and define

Fp = {x ∈ supp(ν) : ν(B(x , r)) ≥ rn/p},

Fp,q = {x ∈ Fp : ν(B(x , r) ∩ Fp) ≥ rn

pq
}.

If Rν : L2(ν)→ L2(ν) is bounded, then there is a C
pq -AD regular

measure σ so that σ|Fp,q = ν|Fp,q and Rσ : L2(σ)→ L2(σ) is
bounded. That is, σ is uniformly rectifiable.
If ν(Fp) ≥ δ‖ν‖ then there exists q large depending on δ s.t.
ν(Fp,q) ≥ 1

2ν(Fp).
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Proof of BP(UR) in harmonic measure: Case 1

Case 1: ω1(Gbd ) ≥ δ ω1(B).
G′ := {x ∈ Gbd : Θn

ω1|G (x , r) ≥ ρ′Θn
ω1

(x , r),∀r ∈ (0,2r(B))}.
Besicovitch covering, for ρ′ small enough,
ω1(G′) ≥ 1

2ω1(Gbd ) ≥ δ
2 ω1(B).

For x ∈ G′, Θn
ω1|G (x , r) ≥ ρ′ρΘn

ω1|G (B).

Set ν = ω1|G
Θn

ω1|G
(B) and note G′ ⊂ Fp, p = (ρ′ρ)−1.

By Theorem of Nazarov, Tolsa and Volberg we can find a
uniformly rectifiable measure σ so that σ|Fp,q = ν|Fp,q .

ν(Fp,q) ≥ 1
2ν(Fp) ≥ 1

2ν(G′) = ω1(G′)
Θn

ω1|G
(B) ≥

δ
4

ω1(B)
Θn

ω1|G
(B) ≥

δ
4ν(B).

The result now follows.
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Rectifiability criterion of Girela-Sarrión and Tolsa

Let µ be Radon and B ⊂ Rn+1 a ball with µ(B) > 0 s.t.
(a) For some constant C0 > 0, Pµ(B) ≤ C0 Θµ(B).

(b) There is some n-plane L passing through the center of B
such that, for some constant 0 < δ � 1, βL

µ,1(B) ≤ δΘµ(B).
(c) For some constant C1 > 0, there is GB ⊂ B such that

sup
0<r≤2r(B)

µ(B(x , r))

rn +R∗(χ2B µ)(x) ≤ C1 Θµ(B), for all x ∈ GB

and µ(B \GB) ≤ δ µ(B).

(d) For some constant 0 < τ � 1,∫
GB

|Rµ(x)−mµ,GB (Rµ)|2 dµ(x) ≤ τ Θµ(B)2µ(B).

If δ, τ small enough, there is a uniformly n-rectifiable set
Γ ⊂ Rn+1 such that µ(GB ∩ Γ) ≥ θ µ(B).
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Proof of BP(UR) in harmonic measure: Case 2

Case 2: ω1(Gbd ) < δ ω1(B).
For δ < ε, by the weak-A∞ property, ω2(Gbd ) < ε′ω2(B).
ω2(B \G) ≤ 2ε′ω2(B)⇒ ω2(B \Gsd ) ≤ 3ε′ω2(B).

Have shown that: Pγ,ω2(B) . Θω2(B), for any γ ∈ [0,1],
βω2,1(B) < ηΘω2(B), and r(B) . τ |x2 − cB|.
It is enough to prove (c) and (d) in Girela-Sarrión and
Tolsa for µ = ω2 and GB = Gsd .
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Proof of (c)–bounded density of ωi

Main ingredient: The Alt-Caffarelli-Friedman monotonicity
formula applied to Green functions G1(·,p1) and G2(·,p2).

Theorem

Let B(x ,R) ⊂ Rn+1, and let u1,u2 ∈W 1,2(B(x ,R))∩C(B(x ,R))
be nonnegative subharmonic functions. Suppose that
u1(x) = u2(x) = 0 and that u1 · u2 ≡ 0. Set

γ(x , r) =

(
1
r2

∫
B(x ,r)

|∇u1(y)|2

|y − x |n−1 dy

)
·

(
1
r2

∫
B(x ,r)

|∇u2(y)|2

|y − x |n−1 dy

)
.

(4)
Then γ(x , r) is a non-decreasing function of r ∈ (0,R) and
γ(x , r) <∞ for all r ∈ (0,R). That is,

γ(x , r1) ≤ γ(x , r2) <∞ for 0 < r1 ≤ r2 < R. (5)
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Bounded density of ωi

ωi(B(ξ, r))

rn .

(
1
r2

∫
B(ξ,2r)

|∇ui(y)|2

|y − ξ|n−1 dy

) 1
2

.

(
1

rn+3

∫
B(ξ,4r)

|ui |2
) 1

2

and also (
1

rn+3

∫
B(ξ,ρ)∩Ωi

|ui |2
) 1

2

.
ωi(B(ξ,C1ρ))

ρn .

Thus, by mutual absolute continuity, for r < R/(8C1)

ωi(B(ξ, r))

rn . γ(ξ,2r)1/2 ≤ γ(ξ,R/2C1)1/2 .
ωi(B(ξ,R))

Rn
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Thank you!!!
ευχαριστω πoλυ!!!
Muchas gracias!!!
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