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1. Hamming cube

Consider the Hamming cube {−1, 1}n of an arbitrary dimension
n ≥ 1. For any f : {−1, 1}n → R define the discrete gradient

|∇f |2(x) =
∑
y∼x

(
f (x)− f (y)

2

)2

,

where the summation is over all neighbor vertices of x in {−1, 1}n.
Set

Ef =
1

2n

∑
x∈{−1,1}n

f (x).
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2. Isoperimetric inequalities and Monge–Ampère with drift

What follows is a joint work with Paata Ivanisvili.

Theorem

For 1 < p ≤ 2, any n ≥ 1 and any f : {−1, 1}n → R we obtain
s(p)p(E|f |p − |Ef |p) ≤ ‖∇f ‖pp, where s(p) is the smallest positive
zero of the confluent hypergeometric function

1F1(p/2(1− p), 1/2, x2/2).

Constant s(2) = 1, s(1+) = 0. The latter is not good.

Our approach is based on a certain duality between the classical
square function estimates on Euclidean space and the gradient
estimates on the Hamming cube.
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3.

As a corollary, we have the following estimate for the constant of
Poincaré inequality. Let c(p) be the largest constant such that any
n ≥ 1 and any f : {−1, 1}n → R

cpoincare(p)pE|f − Ef |p ≤ ‖∇f ‖pp.

Let ŝ(p) be the best (largest) constant in

ŝ(p)p(E|f |p − |Ef |p) ≤ ‖∇f ‖pp.

Then we have immediately from the previous slide

s(p) ≤ ŝ(p) ≤ cpoincare(p).
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4.

There is some kind of converse inequality. Notice that if 1 ≤ p ≤ 2
then

there existsK (p) ≤ 2 : ∀x ∈ R, p(1−x)+ |x |p−1 ≤ K (p)|1−x |p .

Put x = f
|Ef | , and apply E. Then

E|f |p−|Ef |p ≤ pE(|Ef |p−f |Ef |p−1)+E|f |p−|Ef |p ≤ K (p)E|f−Ef |p .

Then
s(p) ≤ ŝ(p) ≤ c(p) ≤ K (p)1/p ŝ(p) .
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5. Why p(1− x) + |x |p − 1 ≤ Cp|1− x |p implies p ≤ 2?

Consider x = 1− ε. Then (1− ε)p− 1 + pε = apε
2 + o(ε2), ap > 0.

This can be ≤ Cpε
p for ε→ 0 only if p ≤ 2.
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6.

The constant sp is sharp when p → 2−. On the other hand it
degenerates to 0 when p → 1+ which should not be the case for
the best possible constant by a result of Talagrand.
It will be explained later that sp in a “dual” sense coincides with
the sharp constants found by B. Davis in Lq norm estimates
between stopping times and Brownian motion

dq‖T 1/2‖q ≤ ‖BT‖q, q ≥ 2; (1)

‖BT‖p ≤ dp‖T 1/2‖p, 0 < p ≤ 2. (2)

Here Bt is the Brownian motion starting at zero, and T is any
stopping time. It was explained in B. Davis [4] that the same sharp
estimates (3) and (4) hold with BT replaced by an integrable
function g on [0, 1] with mean zero, and T 1/2 replaced by the
dyadic square function of g .
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6a.

Analogy with square function:

T 1/2=(|t1−t0|+· · ·+|tn−tn−1|)1/2 =(E|Bt1−Bt0 |2+· · ·+E|Btn−Btn−1 |2)1/2.

We notice the big difference between

dq‖T 1/2‖q ≤ ‖BT‖q, q ≥ 2; (3)

‖BT‖p ≤ dp‖T 1/2‖p, 0 < p ≤ 2. (4)

and slide 2 inequality:

s(p)p(E|f |p − |Ef |p) ≤ ‖∇f ‖pp

that for the given power p, 1 < p ≤ 2, we need “dual” constant
sp = d p

p−1
in the theorem. Inequality of slide 2 cannot be extended

to the full range of exponents p unlike (3-4).
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7. Why slide 2 cannot be extended to the full range of p?

Notice that
(E|f |p − |Ef |p) ≤ C (p)‖∇f ‖pp

cannot be extended for the range of exponents p > 2 with some
finite constant C (p), p > 2. Indeed, assume the contrary. If this
were true then Gaussian E would also work.
Take f (x) = 1 + ax . Using Jensen’s inequality we obtain

(1 + a2)p/2 =

(∫
R
|1 + ax |2dγ

)p/2

≤
∫
R
|1 + ax |pdγ≤C (p)|a|p + 1.

(5)

Therefore taking a→ 0 we obtain the contradiction because

pa2/2 ≤ C (p)|a|p

is false for for p > 2.
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8. Gaussian isoperimetry of Sudakov–Tsirelson and Borell

Let ϕ(x) = 1√
2π
e−x

2/2 denote the density of γ = γ1 and let Φ−1

denote the inverse of the standard Gaussian distribution function
Φ(x) = γ1((−∞, x ]). The Gaussian isoperimetric inequality due to
V.N. Sudakov, B.S. Tsirelson and C. Borell then asserts that, for
any measurable set A ⊂ Rn,

γ+n (A) ≥ I (γn(A)), I (t) = ϕ(Φ−1(t)), t ∈ [0, 1] .

Here equality holds for an arbitrary halfspace A. Remarkable
feature is that the function I is independent of the dimension n.

γ+n (A) = lim infh→0
γn(Ah)−γn(A)

h , where Ah is the h-neighborhood
of A in Euclidean metric.

Alexander Volberg



9. Bobkov’s functional inequality on Hamming cube

Sergei Bobkov proved the following generalization of the previous
inequality.
Let f :→ [0, 1] then

I (Ef ) ≤ E
√

I 2(f ) + |∇f |2 ,

where |∇f |(x) :=

√∑n
i=1

(
f (x)−f (si (x))

2

)2
, and si (x) are all n

neighbors of x .
Obviously, for f = 1A,A ⊂ {−1, 1}n, one gets
I (1A)(x) = 0∀x ∈ {−1, 1}n, and we get

ϕ(Φ−1(|A|)) ≤ E|∇f | =
1

2
E
√

wA(x) =:
1

2
surface measure of A ,

where wA(x) = |neighbors of x from outside|.
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10. Using Bobkov

In particular, two things can be derived:
1) If |A| = 2n−1 then

E(wA(x))1/2 ≥ 2√
2π

=

√
2

π
.

2) For any function f : {−1, 1}n → R one has Talagrand-Poincaré
inequality

E|f − Ef | ≤ C1E|∇f | .

Also 1 ≤ q <∞ Talagrand-Poincaré inequalities hold:

E|f − Ef |q ≤ Cq
qE|∇f |q .

Seems like nobody knows sharp Cq on Hamming cube.
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11. Combinatorics. What we know about
g(p) := infn infA: |A|=2n−1 E(wA)p/2?

1) g(p) = infn infA: |A|=2n−1 E(wA)p/2 = 0 if p ∈ [0, 1). Hamming
balls are extremizers.

2) g(1) ≥
√

2
π , from Bobkov. Sharp?

3) g(2) = 1, discrete Poincaré. Sharp. Half-cube is extremal.
4) g(p) is monotonically increasing.
5) g(p) ≥ s(p)p, from our theorem on slide 2. In fact apply
theorem to f (x) = 1, x ∈ A; f (x) = −1, x ∈ {−1, 1}n \ A. Can be
sharp only near p = 2.

6) g(p) ≥ max{s(p)p,
(
2
π

) p
2 }.
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12. Slide 2 for positive functions on Hamming cube

It is also interesting to remark that if one considers only
nonnegative functions in Theorem 1 then one obtains probably
better constant than spp . For example, it was obtained in [5] that
for any smooth f ≥ 0 we have

(H ′1/(p−1)(R1/(p−1)))p−1
(∫

Rn

f pdγ −
(∫

Rn

f dγ

)p)
≤
∫
Rn

|∇f |pdγ,

where Hq is the Hermite function, and Rq is the largest zero of Hq.
Numerical computations show that the constant
(H ′1/(p−1)(R1/(p−1)))p−1 is larger than spp .

If p = 3/2 , (2x |x = 1)1/2 =
√

2, and, therefore,(∫
Rn f

3/2dγ −
(∫

Rn f dγ
)3/2) ≤ 1√

2

∫
Rn |∇f |3/2dγ if f ≥ 0.

We do not know whether the same constants work for
positive functions on Hamming cube and E replacing
Gaussian measure

∫
·dγ. But for p = 3/2 we do know that.
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13. An anonymous Bellman function

In this section we want to define a function U : R2 → R that
satisfies some special properties. Let α ≥ 2 and let β = α

α−1 ≤ 2
be the conjugate exponent of α. Let

Nα(x) := 1F1

(
−α

2
,

1

2
,
x2

2

)
=
∞∑

m=0

(−2x2)m

(2m)!

α

2

(α
2
− 1
)
· · ·
(α

2
−m + 1

)
=

= 1− x2
α

2
+ ...

be the confluent hypergeometric function. Nα(x) satisfies the
Hermite differential equation

N ′′α(x)− xN ′α(x) + αNα(x) = 0 for x ∈ R (6)

with initial conditions Nα(0) = 1 and N ′α(0) = 0. Let sα be the
smallest positive zero of Nα(z).
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14. Burgess Davis function

For α ≥ 2 set

uα(x) :=

{
− αsα−1

α
N′α(sα)

Nα(x), 0 ≤ |x | ≤ sα;

sαα − |x |α, sα ≤ |x |.

Clearly uα(x) is C 1(R) ∩ C 2(R \ {sα}) smooth, even, concave
function. Concavity follows from matching derivatives and

Lemma

For any α ≥ 2 we have 0 < sα ≤ 1. In addition sα is decreasing in
α > 0, and N ′α(t),N ′′α(t) ≤ 0 on [0, sα] for α > 0.
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15.

Finally we define

U(p, q) := |q|αuα
(

p

|q|

)
with U(p, 0) = −|p|α. (7)

For the first time the function U(p, q) appeared in Davis [4].
Later it was also used by Wang [4, 5] in the form
ũ(p, t) = U(p,

√
t), t ≥ 0. It was explained in Davis [4] that

U(p, q) satisfies the following properties:

U(p, q) ≥ |q|αsαα − |p|α for all (p, q) ∈ R2, (8)

and when q = 0 the equality holds; (9)

2U(p, q) ≥ U(p + a,
√

a2 + q2) + U(p − a,
√

a2 + q2) (10)

for all (p, q, a) ∈ R3. (11)

We should refer to (6-7) as the obstacle condition, and to (8-9) as
the main inequality.
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16.

In Davis main inequality is not written explicitly but one will find
its infinitesimal form

Uq

q
+ Upp ≤ 0 or ũt +

ũpp
2
≤ 0 for ũ(p, t) = U(p,

√
t), (12)

which follows from the main inequality by expanding it into
Taylor’s series with respect to a near a = 0 and comparing the
second order terms. Here ũpp is defined everywhere except the
curve |p/

√
t| = sα, where ũ is only differentiable once.

In fact, the reverse implication also holds, i.e., one can derive

2U(p, q) ≥ U(p + a,
√
a2 + q2) + U(p − a,

√
a2 + q2)

for all (p, q, a) ∈ R3.

from (12) for this special U.
This was done in the PhD thesis of Wang [5] but we will present a
short proof of this.
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17.

The function U(p, q) is essential in obtaining the result in the
Davis paper, namely it is used in the proof of (3), slide 6, and the
argument goes as follows. First one shows that

Xt = U(Bt ,
√
t) for t ≥ 0

is a supermartingale which is guaranteed by (12). Finally, by this
property of being a supermartingale and by obstacle condition,

E(T
α
2 sαα − |BT |α)

(9)

≤ EU(BT ,
√
T ) ≤ U(0, 0) = 0,

which yields (3) of slide 6. One may notice that U(p, q) is the
minimal function with properties obstacle (9) and main inequality
(11) of slide 15.
Davis mentions that the proof presented in his paper was suggested
by an anonymous referee, and this explains the title of slide 13.
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18. Legendre transform of Bellman function U(p, q)

Set Ψ(p, q, x , y) := px + qy + U(p, q) for x ∈ R and y ≥ 0. We
define

M(x , y) = inf
q≤0

sup
p∈R

Ψ(p, q, x , y) for x ∈ R, y ≥ 0. (13)

Lemma

For each (x , y) ∈ R× R+, we have

inf
q≤0

sup
p∈R

Ψ(p, q, x , y) = min
q≤0

max
p∈R

Ψ(p, q, x , y) = (14)

max
p∈R

min
q≤0

Ψ(p, q, x , y) = sup
p∈R

inf
q≤0

Ψ(p, q, x , y), (15)

and the value is attained at a saddle point
(p∗, q∗) = (p∗(x , y), q∗(x , y)) such that

Ψ(p, q∗, x , y) ≤ Ψ(p∗, q∗, x , y) ≤ Ψ(p∗, q, x , y)for all (p, q)∈R× R−.
(16)

Alexander Volberg



19.

First let us show that for each fixed (x , y) the function
Ψ(p, q, x , y) is convex in q and concave in p. Concavity in p
follows from Lemma on slide 14, and the fact that U is even and
C 1 smooth in p.
To verify convexity in q it is enough to show that the map
q → U(p, q) is convex for |p| ≤ qsα. Set z = |p|

q ∈ [0, sα]. Then
we have

Uqq = qα−2
[
α(α− 1)uα(z)− 2(α− 1)zu′α(z) + z2u′′α(z)

] (6)
=

qα−2
[
−(α− 1)zu′α(z) + (z2 − α + 1)u′′α(z)

]
.

Since uα(z) coincides with Nα(z) up to a positive constant, the
convexity follows from Lemma 2 and the fact that α ≥ 2. Notice
that for each (x , y) ∈ R× R+ the map

(p, q)→ px + qy + |q|αuα
(

p

|q|

)
(17)

is continuous and (0, 0) sup inf -compact.
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20. Minimax theorems for noncompact sets

Let P,Q be not empty convex sets in Rd .

Definition

A function f : P × Q → R is called (p0, q0)-sup inf-compact for a
fixed (p0, q0) ∈ X × Y if the level sets {q ∈ Q : f (p0, q) ≤ a} and
{p ∈ P : f (p, q0) ≥ a} are compact for any a ∈ R.

Theorem

If f : P ×Q → R is upper semi-continuous and concave in p, lower
semi-continuous and convex in q, and (p0, q0)-sup inf-compact for
a fixed (p0, q0) ∈ P × Q then we have

max
p∈P

min
q∈Q

f (p, q) = sup
p∈P

inf
q∈Q

f (p, q) = inf
q∈Q

sup
p∈P

f (p, q) = min
q∈Q

max
p∈P

f (p, q).

(18)
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21. From U to M

Lemma

For β = α
α−1 , any x , a, b ∈ R, and any y ≥ 0 we have

M(x , y) ≥
(
α− 1

αβ

)(
|x |β − yβ

sβα

)
and when y = 0 the equality holds;

(19)

2M(x , y) ≥ M(x + a,
√

a2 + (y + b)2) + M(x − a,
√
a2 + (y − b)2) .

(20)

Notices that the Legendre transform (13) produces from U(p, q)
function M(x , y) with inequality (20) that seems to be very
close to but which is diifferent from

2U(p, q) ≥ U(p + a,
√
a2 + q2) + U(p − a,

√
a2 + q2)

for all (p, q, a) ∈ R3.
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22. Proving lemma

Set

(x±, y±) := (x ± a,
√
a2 + (y ± b)2).

Lemma of slide 18 gives saddle points (p∗, q∗) and (p±, q±)
corresponding to (x , y) and (x±, y±). It follows from (16) that to
prove (20) it would be enough to find numbers p ∈ R and
q1, q2 ≤ 0 such that

2Ψ(p, q∗, x , y) ≥ Ψ(p+, q1, x+, y+) + Ψ(p−, q2, x−, y−).

The right choice will be

p =
p+ + p−

2
and q1 = q2 = −

√(
p+ − p−

2

)2

+ (q∗)2 , (21)

but let us explain it in details.
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23. Verifying main inequality for M(x , y)

Indeed, we have

q1

√
a2 + (y + b)2 + q2

√
a2 + (y − b)2 − 2q∗y =

−
√

(q21 − (q∗)2) + (q∗)2
√
a2 + (y + b)2−√

(q22 − (q∗)2) + (q∗)2
√
a2 + (y − b)2 − 2q∗y ≤

− |a|
√

q21 − (q∗)2 − |q∗(y + b)| − |a|
√

q22 − (q∗)2 − |q∗(y − b)| − 2q∗y ≤

− |a|
(√

q21 − (q∗)2 +
√

q22 − (q∗)2
)
.

Denote r2j = q2j − (q∗)2 for j = 1, 2. From above it is enough to
find p ∈ R and r1, r2 ≥ 0 such that

2(px + U(p, q∗)) ≥ −|a|(r1 + r2) + p+x+ + U

(
p+,

√
r21 + (q∗)2

)
+

p−x− + U

(
p−,

√
r22 + (q∗)2

)
.
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24. Verifying main inequality for M(x , y)

Choose p = p++p−

2 , and substituting the values for x± = x ± a we
see that it would suffice to find r1, r2 ≥ 0 such that

2U

(
p+ + p−

2
, q∗
)
≥−|a|(r1 + r2) + a(p+ − p−)+U

(
p+,

√
r21 + (q∗)2

)
+ U

(
p−,

√
r22 + (q∗)2

)
.

We choose r1 = r2 = |p+−p−|
2 . It follows from

−|a|(r1 + r2)|+ a(p+ − p−) ≤ 0 that we only need to have the
inequality–which is (8-9) on slide 15 (main inequality for U):

2U

(
p+ + p−

2
, q∗
)
≥ U

p+,

√(
p+ − p−

2

)2

+ (q∗)2


+ U

p−,

√(
p+ − p−

2

)2

+ (q∗)2

 .
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25. Verifying obstacle condition for M(x , y)

To verify the obstacle condition (19) of slide 21 notice that (9) for
U(p, q) gives

M(x , y) ≥ inf
q≤0

sup
p

(px + qy + |q|αsαα − |p|α) =

(
α− 1

αβ

)(
|x |β − yβ

sβα

)
.

(22)

Finally if y = 0, then we obtain

M(x , 0) = sup
p

inf
q≤0

(px + U(p, q))
(∗)
= sup

p
(px + U(p, 0)) = sup

p
(px − |p|α)

=

(
α− 1

αβ

)
|x |β .

Equality (*) follows from the fact that

q → px + U(p, q)

is an even convex map.
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26. Corollary

Corollary

For any a, x ∈ R, all y , b ∈ RN , and any N ≥ 1, we have

M(x + a,
√
a2 + ‖y + b‖2) + M(x − a,

√
a2 + ‖y − b‖2) ≤ 2M(x , ‖y‖).

(23)

Proof.

It follows from the definition of M that the map y → M(x , y) is
decreasing in y for y ≥ 0. Therefore by the lemma and the triangle
inequality we obtain

1

2

(
M(x + a,

√
a2 + ‖y + b‖2) + M(x − a,

√
a2 + ‖y − b‖2)

)
≤

M

(
x ,
‖y + b‖+ ‖y − b‖

2

)
≤ M(x , ‖y‖).
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27. Functional inequality on Hamming cube

follows from the previous corollary.
The inequality (23) of the previous slide gives rise to the estimate

EM(f , |∇f |) ≤ M(Ef , 0) for all f : {−1, 1}n → R. (24)

In fact, inequality (23) is the same as the following pointwise
inequality on {−1, 1}n−1:

ExjM(f , |∇f |) ≤ M(Exj f , |∇Exj f |) for any f : {−1, 1}n → R, (25)

where Exj takes the average in the coordinate xj , i.e.,

Exj f =
1

2

f (x1, . . . , 1, . . . , xn)︸ ︷︷ ︸
set 1 on the j-th place

+f (x1, . . . ,−1, . . . , xn)︸ ︷︷ ︸
set −1 on the j-th place

 .

The rest follows by iterating (25), the fact that E = Ex1 . . .Exn

and |∇Ef | = 0.
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28. The proof of Theorem 1

We have(
α− 1

αβ

)
E
(
|f |β − |∇f |

β

sβα

)
(19)

≤ EM(f , |∇f |)
(24)

≤

M(Ef , 0)
(19)
=

(
α− 1

αβ

)
|Ef |β,

and this gives inequality of slide 2:

s(p)p(E|f |p − |Ef |p) ≤ ‖∇f ‖pp .
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29. Going from U to M : from Square function to the
Hamming cube

Let g be an integrable function on [0, 1]. Let D([0, 1]) denote all
dyadic intervals in [0, 1]. Consider the dyadic martingale gn defined
as follows

gn(x) =
∑

|I |=2−n, I∈D([0,1])

〈g〉I1I (x), (26)

where 〈g〉I = 1
|I |
∫
I g . The square function S(g) is defined as

follows

S(g)(x) =

( ∞∑
n=0

(gn+1(x)− gn(x))2

)1/2

.

For convenience we always assume that the number of nonzero
terms in (26) is finite so that S(g)(x) makes sense. Let O(p, q) be
a continuous real valued function, and suppose one wants to
estimate the quantity from above

∫ 1
0 O(g ,S(g)) in terms of

∫ 1
0 g .
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30. Correct Bellman function is equivalent to correct
square function estimate

Clearly, if one finds a function

U(p, q) ≥ O(p, q),U(p, 0) ≤ 0 (27)

2U(p, q) ≥ U(p + a,
√
a2 + q2) + U(p − a,

√
a2 + q2), (28)

then one obtains the bound (for g ,
∫ 1
0 g = 0)∫ 1

0 O(g , S(g)) ≤
∫ 1
0 U(g ,S(g)) ≤ U

(∫ 1
0 g , 0

)
≤ 0.

Typically, O(x , y) = c |y |p − |x |p, so we get∫ 1
0 O(g , S(g)) = c

∫
S(g)p −

∫
|g |p ≤ 0. Conversely, suppose that

the inequality
∫ 1
0 O(g ,S(g)) ≤ F

(∫ 1
0 g
)

holds for all integrable

functions g on [0, 1], and some F (F (0) ≤ 0). Then there exists
U(p, q) such that the conditions (27), (28) are satisfied and
U(p, 0) ≤ F (p), so U(0, 0) ≤ 0.
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31. Correct Bellman function is equivalent to correct
square function estimate

Indeed, consider the extremal problem

U(p, q) = sup
g

{∫ 1

0
O(g ,

√
S(g)2 + q2),

∫ 1

0
g = p

}
. (29)

This U satisfies (27) (take g = p constant), and, in fact, it
satisfies (28). The latter fact can be proved by using the standard
Bellman principle (see Chapter 8, [5], and survey [4]). Besides

U(p, 0) = sup
g

{∫ 1

0
O(g , S(g)),

∫ 1

0
g = p

}
≤ F (p)

follows from (29). Therefore there is one-to-one correspondence
between the extremal problems for the square function estimates of
the form (29) and the functions U(p, q) with the properties (27)
and (28).
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32. Bellman function for problems on Hamming cube?

The extremal problems for the gradient estimates on the Hamming
cube are more subtle. Take any real valued Õ(x , y) and suppose
we want to estimate from above EÕ(f , |∇f |) in terms of Ef for
any f : {−1, 1}n → R and for all n ≥ 1. Clearly, if one finds
M(x , y) such that

2M(x , y)≥M(x + a,
√

a2+(y + b)2)+M(x − a,
√
a2+(y − b)2), (30)

then one gets (31) by induction on cube’s dimension (slide 27)

EM(f , |∇f |) ≤ M(Ef , 0) . (31)

if in addition M(x , y) ≥ Õ(x , y) then EÕ(f , |∇f |) ≤ M(Ef , 0)
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32a. Bellman function for problems on Hamming cube.
Example.

Beckner’s inequality in Lp on Hamming cube with p = 3/2 is that

for any positive f on {−1, 1}n Ef 3/2 − 3
8E
|∇f |2
f 1/2
≤ (Ef )3/2 .

Consider

M(x , y) =
1√
2

(2x −
√
x2 + y2)

√
x +

√
x2 + y2, x ≥ 0,

satisfies pointwise inequality

x3/2 − 3

8

y2

x1/2
≤ 1√

2
(2x −

√
x2 + y2)

√
x +

√
x2 + y2, x ≥ 0 .

(32)
The following improves Beckner’s inequality because of pointwise
estimate (32).

E
1√
2

(
(2f −

√
f 2 + |∇f |2)

√
f +

√
f 2 + |∇f |2

)
≤ (Ef )3/2,
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32b. Bellman function for problems on Hamming cube.
Example.

M(x , y) =
1√
2

(2x−
√

x2 + y2)

√
x +

√
x2 + y2, M(x , 0) = x3/2, x ≥ 0,

M(x , y) ≥ x3/2 − 1√
2
y3/2 =: Õ(x , y) .

And looking at the previous slide we get two inequalities: improved
Beckner inequality:

1) E

(
(2f −

√
f 2 + |∇f |2)

√
f +

√
f 2 + |∇f |2

)
≤
√

2(Ef )3/2,

and new sharp Poincaré inequality for functions
f : {−1, 1}n → R+:

2) Ef 3/2 − (Ef )3/2 ≤ 1√
2
E|∇f |3/2 ⇒ E(wA(x))3/4 ≥ (2−

√
2)
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33. Bellman function for problems on Hamming cube?

Thus finding such M is sufficient to obtain the estimate but it is
unclear whether condition (30) is necessary to obtain the bound
EÕ(f , |∇f |) ≤ M(Ef , 0).
In other words we do not know what is the corresponding extremal
problem for M, i.e., what is the right Bellman function M. The
reason lies in the fact that there is an essential difference between
the Hamming cube as a graph and the dyadic tree, i.e., test
functions do not concatenate in a good way on {−1, 1}n as it
happens for dyadic martingales.
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34. Abstract way to pass from dyadic tree to Hamming
cube

Theorem

Let I , J ⊆ R be convex sets. Take an arbitrary
O(p, q) ∈ C (I × R+), and let U(p, q) : I × R+ → R satisfy
properties (27) and (28). Assume for each (x , y) ∈ J × R+ the
map (p, q)→ px + qy + U(p, |q|) has a saddle point
(p∗(x , y), q∗(x , y)) such that

inf
q≤0

sup
p∈I

(px + qy + U(p, |q|)) = sup
p∈I

inf
q≤0

(px + qy + U(p, |q|))

= p∗x + q∗y + U(p∗, |q∗|).

M(x , y) = infq≤0 supp∈I (px + qy + U(p, |q|)) ; , Õ(x , y) =
infq≤0 supp∈I (px + qy + O(p, |q|)) ; satisfy (30), and thereby (31)
for any f : {−1, 1}n → J and any n ≥ 1.
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35. The main inequality for U and inverse heat

One may think that finding U(p, q) with the property (28) is a
difficult problem. Let us make a quick remark here that if it
happens that t → U(p,

√
t) is convex for each fixed p ∈ I then

(28) is automatically implied by its infinitesimal form, i.e.,
Upp + Uq/q ≤ 0, or 1

2upp + ut ≤ 0, u(p, t) = U(p,
√
t), which is

the inverse heat equation.
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36. Going from M to U

Another interesting observation is that the equality

M(x , y) = inf
q≤0

sup
p∈I

(px + qy + U(p, |q|))

was lurking in a solution of a certain Monge–Ampère equation. For
example, taking a, b → 0 in (30) of slide 32, and using the Taylor’s
series expansion (assuming that M is smooth enough) one obtains(

Mxx +
My

y Mxy

Mxy Myy

)
≤ 0 . (33)
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37. Suppose we guessed M but cannot prove the main
inequality for it?

When looking for the least function M with M ≥ Õ and (33), it is
reasonable to assume that condition (33) should degenerate
except, possibly, on the set where M coincides with its obstacle Õ.
The degeneracy of (33) means that the determinant of the matrix
in (33) is zero. This is a general Monge–Ampère type equation
and, after a successful application of the exterior differential
systems of Bryant–Griffiths (see [4]), we obtain that the solutions
can be locally characterized as follows

x = −Up(p, q),

y = −Uq(p, q),

M(x , y) = px + qy + U(p, q), (34)

where U satisfies the equation Upp +
Uq

q = 0. We will not
formulate a formal statement but we do make a remark that such
a reasoning allows us to guess the dual of M, i.e., find U given M,
and how this guess works will be illustrated on next slide.

Alexander Volberg



38. Here is M for which it was difficult to prove the main
inequality. Improved Beckner for p = 3/2
Beckner–Poincaré inequality 3/2: a simple proof via duality

It was proved in [3] that for any f : {−1, 1}n → R+ we have

E< (f + i |∇f |)3/2 ≤ (Ef )3/2, (35)

where z3/2 is taken in the sense of principal brunch. Inequality
(35) improves Beckner’s bound [3]. Consider

M(x , y) = <(x + iy)3/2 =
1√
2

(2x −
√
x2 + y2)

√√
x2 + y2 + x .

It was explained in [3] that to prove (35) it is enough to check that
M(x , y) satisfies (30), and the latter fact involved careful
investigation of the roots of several very high degree polynomials
with integer coefficients. Let us give a simple proof of (30) using
our duality technique.
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39 Improved Beckner for p = 3/2

Proposition

Function M(x , y) = <(x + iy)3/2 satisfies (30) for all x , y , a, b ∈ R.

Proof.

Function M(x , y) is a solution of the homogeneous Monge–Ampère
equation (33), and therefore it has a representation of the form
(34) (see Section 3.1.4 in [4]). This leads us to the following guess

1√
2

(2x −
√
x2 + y2)

√√
x2 + y2 + x

= inf
q≤0

sup
p≥0

(
xp + qy − 4

27
(p3 − 3pq2)

)
,

which can be directly checked. Notice that in this case
U(p, q) = − 4

27(p3 − 3pq2). Following Theorem of slide 34 it is
enough to check that U(p, q) satisfies (28). Notice that (28) is
identity for U(p, q) = − 4

27(p3 − 3pq2). We are done.
Alexander Volberg



40. Dual to Log-Sobolev is Chang–Wilson–Wolff:
superexponential bounds

The function M(x , y) = x ln x − y2

2x satisfies (33) and therefore it
gives the log-Sobolev inequality [4]. Its dual in the sense of (34) is
U(p, q) = ep−q

2/2 (see Section 3.1.1 in [4] where t = q2/2).
Notice that for this U inequality (28) simplifies to

2ea
2/2 ≥ ea + e−a

which is true since (2k)! ≥ 2kk! for k ≥ 0. Therefore we obtain

Corollary

For any integrable g on [0, 1] we have∫ 1

0
exp

(
g − S2(g)

2

)
≤ exp

(∫ 1

0
g

)
.
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41.

The corollary immediately recovers the result of
Chang-Wilson-Wolf [3] well-known for probabilists, namely for any

g with
∫ 1
0 g = 0 and ‖S(g)‖∞ <∞ we have∫ 1

0
eg ≤ e‖S(g)‖

2
∞/2 (36)

Next, repeating a standard argument, namely, considering tg ,
applying Chebyshev inequality (see Theorem 3.1 in [3]) one obtains
the superexponential bound

Corollary

Suppose ‖Sg‖∞ <∞. Then for any λ ≥ 0 we have

|{x ∈ [0, 1]] : g(x)−
∫ 1

0
g ≥ λ}| ≤ e−

1
2
λ2/‖Sg‖2∞ .
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42.

We should remind that log-Sobolev inequality via the Herbst
argument [1] gives Gaussian concentration inequalities, namely

γ

(
x ∈ Rn : f (x)−

∫
Rn

fdγ ≥ λ
)
≤ e−

1
2
λ2/‖∇f ‖2∞ (37)

for any λ ≥ 0, and any smooth f : Rn → R with ‖∇f ‖∞ <∞.
Here dγ is the standard Gaussian measure on Rn.
In other words we just illustrated that estimates (37) and (36) are
dual to each other in the sense of duality between functions

M = x ln x − y2

2x and U = ep−q
2/2.
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43. Gaussian measure on Rd

Application of the Central Limit Theorem to our main inequality
gives dimension independent Sobolev inequality

Corollary

For any smooth bounded f : Rn → R and any n ≥ 1 we have

spp′

(∫
Rn

|f |pdγ −
∣∣∣∣∫

Rn

fdγ

∣∣∣∣p) ≤ ∫
Rn

|∇f |pdγ. (38)

Behavior of spp′ is sharp when p → 2−. However, the best possible

constant in (38) unlike spp′ should not degenerate when p → 1+.
Indeed, Cheeger’s isoperimetric inequality (see [2], pp. 115) claims√

2

π

∫
Rn

∣∣∣∣f − ∫
Rn

fdγ

∣∣∣∣ dγ ≤ ∫
Rn

|∇f |dγ, (39)

where the constant
√

2
π is the best possible in the left hand side of

(39). We should also mention that estimate (39) can be also easily
obtained by co-area formula and Bobkov’s estimate (gaussian
isoperimetry). Also from a remarkable trick of Maurey from
Pisier’s [1].
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44. From Brownian motion stopping times to Square
function estimates

Lemma (Barthe–Mauery [1])

Let J be a convex subset of R, and let V (p, q) : J × R+ → R be
such that

Vpp +
Vq

q
≤ 0 for all (p, q) ∈ J × R+; (40)

t 7→ V (p,
√
t) is convex for each fixed p ∈ J. (41)

Then for all (p, q, a) with p ± a ∈ J and q ≥ 0, we have

2V (p, q) ≥ V (p + a,
√
a2 + q2) + V (p − a,

√
a2 + q2). (42)

The lemma says that the global discrete inequality (42) is in fact
implied by its infinitesimal form (40) under the extra condition
(41).
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45. From Brownian motion stopping times to Square
function estimates

The argument is borrowed from [1]. The similar argument was
used by Davis [4] in obtaining sharp square function estimates from
the ones for the Brownian motion.
Without loss of generality assume a ≥ 0. Consider the process

Xt = V (p + Bt ,
√

q2 + t), t ≥ 0.

Here Bt is the standard Brownian motion starting at zero. It
follows from Ito’s formula together with (40) that Xt is a
supermartingale. Let τ be the stopping time

τ = inf{t ≥ 0 : Bt /∈ (−a, a)}.
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46. From Brownian motion to Square function estimates

V (p, q) = X0 ≥ EXτ = EV (p + Bτ ,
√
q2 + τ) =

P(Bτ = −a)E(V (p − a,
√

q2 + τ)|Bτ = −a)+

P(Bτ = a)E(V (p + a,
√

q2 + τ)|Bτ = a) =

1

2

(
E(V (p − a,

√
q2 + τ)|Bτ = −a) + E(V (p + a,

√
q2 + τ)|Bτ = a)

)
≥

1

2

(
V

(
p − a,

√
q2 + E(τ |Bτ = −a)

)
+ V

(
p + a,

√
q2 + E(τ |Bτ = a)

))
=

1

2

(
V
(
p − a,

√
q2 + a2

)
+ V

(
p + a,

√
q2 + a2

))
.

Notice that we have used P(Bτ = a) = P(Bτ = −a) = 1/2,
E(τ |Bτ = a) = E(τ |Bτ = −a) = a2, and the fact that the map
t 7→ V (p,

√
t) is convex together with Jensen’s inequality.
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47. Here is P(x ; b, y).

P(x) =

− 128b3y3(b2y2 + y2 + 2 + 4by + 3b2 + 2b3y+

b4)(b2y2 + y2 + 2− 4by + 3b2 − 2b3y + b4)x3+

(−64y8b8 + 1088b6y6 − 3392b8y4 + 8128b10y2+

384b10y6 − 704b12y4 + 960b8y6 − 3136b10y4

+ 3392b12y2 + 512b14y2 − 64y8b6 + 64y8b4+

64y8b2 − 960b4y6 + 960b6y4 + 64b2y6

− 2816b4y2 + 1280b4y4 + 1088b6y2−
640b2y4 + 7872b8y2 − 1280b2y2 − 10880b8

− 8960b10 − 3072b4 − 128b16 − 7808b6 − 512b2−
4352b12 − 1152b14)x2

(−1792b5y3 + 256b7y7 − 5504b7y3 − 1408b5y7+
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48.

+ 3456b7y5 − 384y7b3 + 640b9y5+

2752b5y5 + 1536b3y3 − 5760b9y3 − 3840b11y3−
768b3y5 + 512by + 3072b3y+

1024by3 + 1984b13y + 384b15y + 32b17y+

32by9 + 10272b9y + 768by5+

5760b11y + 256by7 + 32b9y9 − 128b11y7−
1408b13y3 − 64b5y9

− 640b9y7 + 1664b11y5 + 192b13y5 − 128b15y3+

7936b5y + 11520b7y)x+

− 256− 144b18 − 16y10 + 688y8b8 + 1504b6y6−
1920b8y4 − 3440b10y2

− 2304b10y6 + 2592b12y4 − 192b8y6 + 3264b10y4−
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49.

− 4448b12y2 − 352b14

y2 − 288y8b6 − 224y8b4 + 48y8b2 − 736b4y6−
1376b6y4 − 320b2y6 − 2816b4y2

− 480b4y4 + 2496b6y2 − 1792b2y4 + 3056b8y2−
3072b2y2 − 768y2 − 512y6 − 896y4

− 144y8 − 3344b8 + 1584b10 − 4992b4 − 336b16−
6656b6 − 1792b2 + 2528b12+

608b14 − 64b16y4 + 96b14y6 + 16y10b2 + 32y10b4+

624b16y2 − 864b14y4

+ 416b12y6 − 64b12y8 − 16b10y8 − 16b8y10+

16b10y10 − 32y10b6 + 16b18y2
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