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Motivation

What is the relationship between the geometry of a domain and the
boundary regularity of the solutions to a differential operator on this
domain? (regularity=degree of smoothness.)

Can the regularity at the boundary of a “general harmonic function”
distinguish between a rectifiable and a purely unrectifiable boundary?
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Some history

F&M Riesz (1916): Let Ω ⊂ R2 be a simply connected domain
bounded by a Jordan curve. If H1(∂Ω) <∞ then the harmonic
measure ω and the surface measure σ = H ∂Ω are mutually
absolutely continuous, i.e.

ω(E ) = 0 iff σ(E ) = 0

Lavrentiev (1936): Let Ω ⊂ R2 be a bounded simply connected chord
arc domain. Then ω ∈ A∞(σ).

What happens in higher dimensions?
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Domains

A domain Ω ⊂ Rn is uniform (1-sided NTA) (with constant M)
[Aikawa - Hofmann & Martell] if it satisfies:

I Interior corkscrew condition (with constant M)
I Harnack chain condition (with constant M)

A domain Ω ⊂ Rn is NTA (non-tangentially accessible) [Jerison -
Kenig] if:

I Ω is uniform
I Exterior corkscrew condition

A domain Ω ⊂ Rn has Ahlfors regular boundary if there exists c0 > 1
such that for q ∈ ∂Ω and r ∈ (0, diam Ω)

c−1
0 rn−1 ≤ σ(B(q, r)) ≤ c0r

n−1.
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Harmonic measure and quantitative rectifiability

Let Ω ⊂ Rn be a uniform domain with Ahlfors regular boundary. Then the
following are equivalent:

1) ∂Ω is (n − 1)-uniformly rectifiable.

2) Ω is an NTA domain, thus a chord arc domain.

3) ω ∈ A∞(σ).

Proof:
2) =⇒ 3) David–Jerison & Semmes

3) =⇒ 1) Hofmann–Martell–Uriarte-Tuero

1) =⇒ 2) Azzam–Hofmann–Martell–Nyström–Toro
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Divergence form elliptic operators

Let Ω ⊂ Rn be a bounded Wiener regular domain and
Lu = −div (A(x)∇u) with A(x) = (aij(x)) an uniformly elliptic
symmetric matrix with bounded measurable coefficients, i.e.

λ|ξ|2 ≤ 〈A(x)ξ, ξ〉, 〈A(x)ξ, ζ〉Λ ≤ |ξ||ζ| for x ∈ Ω and ξ, ζ ∈ Rn.

Let ωL be the corresponding elliptic measure. Recall that if f ∈ C (∂Ω)
there exists u ∈ C (Ω) such that{

Lu = 0 in Ω
u = f on ∂Ω

(1)

Moreover

u(x) =

ˆ
∂Ω

f (q) dωx
L(q)
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Questions

For what type of domains Ω and operators L do we have
ωL ∈ A∞(σ)?

What does the fact that ωL ∈ A∞(σ) imply about the geometry of Ω?

Caffarelli-Fabes-Kenig, Modica-Mortola, Modica-Mortola-Salsa
(1981-2): There exist Lipschitz domains and operators L for which ωL

and σ are mutually singular.

Questions: Characterize the operators L for which ωL ∈ A∞(σ).
To what extent does this characterization depend on the domain?
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Different approaches

Perturbation theory.

Structure of the matrix A.

Oscillation of the matrix A.

Properties of the solutions.

Behavior of A and the corresponding elliptic measure on interior
Lipschitz domains whose boundaries coincide with ∂Ω in big pieces.
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Approach based on the oscillation of the matrix A

Fabes-Jerison-Kenig (1984): The continuity of A and a Dini type
condition on its modulus continuity along a transverse direction to the
boundary of a Lipschitz domain yield ωL ∈ A∞(σ).

Kenig-Pipher (2001): Let Ω ⊂ Rn be a Lipschitz domain, suppose
that

sup{δ(z)|∇A(z)|2 : z ∈ B(x , δ(x)/2)}

is a Carleson measure, then ωL ∈ A∞(σ). Here δ(x) = dist(x , ∂Ω)
and σ = Hn−1 ∂Ω.

Similar results hold on chord arc domains. Key: good approximation
by interior Lipschitz domains + maximum principle.
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Questions

Let Ω ⊂ Rn be a uniform domain with Ahlfors regular boundary.

For what operators A does ωL ∈ A∞(σ) imply uniform rectifiability of
the boundary?

For what operators A does absolute continuity of σ with respect to
ωL or vice versa imply rectifiability of the boundary?

Results:

Hofmann-Martell-Toro

Azzam-Garnett-Mourgoglou-Tolsa

Akman-Badger-Hofmann-Martell
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Rectifiability results

Theorems: Let Ω ⊂ Rn be a bounded uniform domain with Ahlfors
regular boundary. Let L· = −div (A(x)∇·) be uniformly elliptic.

1 Zhao-Toro: If A ∈W 1,1(Ω) ∩ L∞(Ω) and σ � ωL then ∂Ω is
(n − 1)-rectifiable.

2 Azzam-Mourgoglou: If A satisfies the [KP] condition and σ � ωL

then ∂Ω is (n − 1)-rectifiable.

3 Zhao-Toro: If A ∈ C (Ω) and ωL ∈ A∞(σ), there exists rΩ > 0 s.t. Ω
satisfies the exterior corkscrew condition for balls of radius less than
rΩ. In particular ∂Ω is locally uniformly rectifiable.

Tatiana Toro (University of Washington) Elliptic measure and rectifiability June 1, 2018 11 / 24



Rectifiability results

Theorems: Let Ω ⊂ Rn be a bounded uniform domain with Ahlfors
regular boundary. Let L· = −div (A(x)∇·) be uniformly elliptic.

1 Zhao-Toro: If A ∈W 1,1(Ω) ∩ L∞(Ω) and σ � ωL then ∂Ω is
(n − 1)-rectifiable.

2 Azzam-Mourgoglou: If A satisfies the [KP] condition and σ � ωL

then ∂Ω is (n − 1)-rectifiable.

3 Zhao-Toro: If A ∈ C (Ω) and ωL ∈ A∞(σ), there exists rΩ > 0 s.t. Ω
satisfies the exterior corkscrew condition for balls of radius less than
rΩ. In particular ∂Ω is locally uniformly rectifiable.

Tatiana Toro (University of Washington) Elliptic measure and rectifiability June 1, 2018 11 / 24



Rectifiability results

Theorems: Let Ω ⊂ Rn be a bounded uniform domain with Ahlfors
regular boundary. Let L· = −div (A(x)∇·) be uniformly elliptic.

1 Zhao-Toro: If A ∈W 1,1(Ω) ∩ L∞(Ω) and σ � ωL then ∂Ω is
(n − 1)-rectifiable.

2 Azzam-Mourgoglou: If A satisfies the [KP] condition and σ � ωL

then ∂Ω is (n − 1)-rectifiable.

3 Zhao-Toro: If A ∈ C (Ω) and ωL ∈ A∞(σ), there exists rΩ > 0 s.t. Ω
satisfies the exterior corkscrew condition for balls of radius less than
rΩ. In particular ∂Ω is locally uniformly rectifiable.

Tatiana Toro (University of Washington) Elliptic measure and rectifiability June 1, 2018 11 / 24



Key idea: Understand the structure of the tangent objects

Let Ω ⊂ Rn be a bounded uniform domain with Ahlfors regular boundary.
Let x0 ∈ Ω, u(y) = GL(x0, y), ωx0

L , and q ∈ ∂Ω. Let qj ∈ ∂Ω, qj → q,
rj → 0+ and consider

Ωj =
1

rj
(Ω− qj) , ∂Ωj =

1

rj
(∂Ω− qj) , σj(E ) =

σ(rjE + qj)

rn−1
j

,

Aj(x) = A(rjx + qj),

uj(z) = rn−2
j

u(rjz + qj)

ω(B(qj , rj))
, and ωj(E ) =

ω(rjE + qj)

ω(B(qj , rj))
.
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Properties of the pseudo-tangents in the case A ∈ C (Ω)

Modulo passing to a subsequence we have:

There exists u∞ ∈ C (Rn) such that uj → u∞ uniformly on compact
sets and ∇uj ⇀ ∇u∞ in L2

loc(Rn).

Ω∞ = {u∞ > 0} 6= ∅ is an unbounded uniform domain, Ωj → Ω∞,
and ∂Ωj → ∂Ω∞ in the Hausdorff distance sense locally uniformly on
compact sets.

There exists a doubling Radon measure ω∞ such that ωj ⇀ ω∞, and
sptω∞ = ∂Ω∞.

There exists an Ahlfors regular measure µ∞ such that σj ⇀ µ∞ and
sptµ∞ = ∂Ω∞. Moreover µ∞ ∼ σ∞ = Hn−1 ∂Ω∞, and ∂Ω∞ is
Ahlfors regular.

L∞u∞ = −div(A(q)∇u∞) = 0 in Ω∞, u∞ > 0 in Ω∞ and u∞ = 0 on
∂Ω∞.
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Properties of the pseudo-tangents in the case A ∈ C (Ω)
and ωL ∈ A∞(σ)

Ω∞ is an unbounded uniform domain with Ahlfors regular boundary.

L∞ is a constant coefficient operator (A∞ = A(q)), and

ωL∞ ∈ A∞(σ∞)

By [HM], Ω∞ satisfies the exterior corkscrew condition.

The fact that Ωj → Ω∞, and ∂Ωj → ∂Ω∞ in the Hausdorff distance
sense locally uniformly on compact sets implies that for j large
enough Ωj satisfies the exterior corkscrew condition.

This combined with a contradiction argument yields that there exists
a rΩ > 0 s.t. Ω satisfies the exterior corkscrew condition for balls of
radius less than rΩ.

Tatiana Toro (University of Washington) Elliptic measure and rectifiability June 1, 2018 14 / 24



Properties of the pseudo-tangents in the case A ∈ C (Ω)
and ωL ∈ A∞(σ)

Ω∞ is an unbounded uniform domain with Ahlfors regular boundary.

L∞ is a constant coefficient operator (A∞ = A(q)), and

ωL∞ ∈ A∞(σ∞)

By [HM], Ω∞ satisfies the exterior corkscrew condition.

The fact that Ωj → Ω∞, and ∂Ωj → ∂Ω∞ in the Hausdorff distance
sense locally uniformly on compact sets implies that for j large
enough Ωj satisfies the exterior corkscrew condition.

This combined with a contradiction argument yields that there exists
a rΩ > 0 s.t. Ω satisfies the exterior corkscrew condition for balls of
radius less than rΩ.

Tatiana Toro (University of Washington) Elliptic measure and rectifiability June 1, 2018 14 / 24



Properties of the pseudo-tangents in the case A ∈ C (Ω)
and ωL ∈ A∞(σ)

Ω∞ is an unbounded uniform domain with Ahlfors regular boundary.

L∞ is a constant coefficient operator (A∞ = A(q)), and

ωL∞ ∈ A∞(σ∞)

By [HM], Ω∞ satisfies the exterior corkscrew condition.

The fact that Ωj → Ω∞, and ∂Ωj → ∂Ω∞ in the Hausdorff distance
sense locally uniformly on compact sets implies that for j large
enough Ωj satisfies the exterior corkscrew condition.

This combined with a contradiction argument yields that there exists
a rΩ > 0 s.t. Ω satisfies the exterior corkscrew condition for balls of
radius less than rΩ.

Tatiana Toro (University of Washington) Elliptic measure and rectifiability June 1, 2018 14 / 24



Properties of the pseudo-tangents in the case A ∈ C (Ω)
and ωL ∈ A∞(σ)

Ω∞ is an unbounded uniform domain with Ahlfors regular boundary.

L∞ is a constant coefficient operator (A∞ = A(q)), and

ωL∞ ∈ A∞(σ∞)

By [HM], Ω∞ satisfies the exterior corkscrew condition.

The fact that Ωj → Ω∞, and ∂Ωj → ∂Ω∞ in the Hausdorff distance
sense locally uniformly on compact sets implies that for j large
enough Ωj satisfies the exterior corkscrew condition.

This combined with a contradiction argument yields that there exists
a rΩ > 0 s.t. Ω satisfies the exterior corkscrew condition for balls of
radius less than rΩ.

Tatiana Toro (University of Washington) Elliptic measure and rectifiability June 1, 2018 14 / 24



Properties of the pseudo-tangents in the case A ∈ C (Ω)
and ωL ∈ A∞(σ)

Ω∞ is an unbounded uniform domain with Ahlfors regular boundary.

L∞ is a constant coefficient operator (A∞ = A(q)), and

ωL∞ ∈ A∞(σ∞)

By [HM], Ω∞ satisfies the exterior corkscrew condition.

The fact that Ωj → Ω∞, and ∂Ωj → ∂Ω∞ in the Hausdorff distance
sense locally uniformly on compact sets implies that for j large
enough Ωj satisfies the exterior corkscrew condition.

This combined with a contradiction argument yields that there exists
a rΩ > 0 s.t. Ω satisfies the exterior corkscrew condition for balls of
radius less than rΩ.

Tatiana Toro (University of Washington) Elliptic measure and rectifiability June 1, 2018 14 / 24



Properties of the pseudo-tangents in the case A ∈ C (Ω)
and ωL ∈ A∞(σ)

Ω∞ is an unbounded uniform domain with Ahlfors regular boundary.

L∞ is a constant coefficient operator (A∞ = A(q)), and

ωL∞ ∈ A∞(σ∞)

By [HM], Ω∞ satisfies the exterior corkscrew condition.

The fact that Ωj → Ω∞, and ∂Ωj → ∂Ω∞ in the Hausdorff distance
sense locally uniformly on compact sets implies that for j large
enough Ωj satisfies the exterior corkscrew condition.

This combined with a contradiction argument yields that there exists
a rΩ > 0 s.t. Ω satisfies the exterior corkscrew condition for balls of
radius less than rΩ.

Tatiana Toro (University of Washington) Elliptic measure and rectifiability June 1, 2018 14 / 24



Take away

There is an underlying compactness argument which guarantees that
objects in a given class (in this case the dilations (Ωj , ∂Ωj , σj , uj , ωj ,Aj))
converge to an object in the class (Ω∞, ∂Ω∞, σ∞, u∞, ωL∞ ,A∞).
Under the correct assumptions on A (for example) the limiting object is
more regular. This allows us to draw information about the sequence of
dilations and the original object.
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Kenig-Pipher

An uniformly elliptic matrix with bounded coefficients is said to satisfy the
[KP] condition in a bounded domain Ω ⊂ Rn if

1 A ∈ Liploc(Ω)

2 ‖δ(x)|∇A(x)|‖L∞(Ω) <∞
3 |∇A|2δ(x) satisfies a Carleson measure estimate

sup
0<r<diam Ω

sup
q∈∂Ω

1

rn−1

ˆ
B(q,r)∩Ω

δ(x)|∇A|2 dx <∞.

Theorem [KP]: Let Ω ⊂ Rn be a bounded Lipschitz domain and let A
satisfy the [KP] condition then ωL ∈ A∞(σ).

Corollary: Let Ω ⊂ Rn be a bounded chord arc domain and let A satisfy
the [KP] condition then ωL ∈ A∞(σ).
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Main result

Theorem: Let Ω ⊂ Rn be a uniform domain with Ahlfors regular
boundary. Let A be a symmetric uniformly elliptic bounded matrix in Ω
satisfying the [KP] condition. Then the following are equivalent:

1) ∂Ω is (n − 1)-uniformly rectifiable.

2) Ω is an NTA domain, thus a chord arc domain.

3) ωL ∈ A∞(σ).

Remarks:
1)⇐⇒ 2) [DJ], [S], [HMU], [AHMMT]

2) =⇒ 3) [KP], [DJ], [HMU]

3) =⇒ 1) Hofmann-Martell-Mayboroda-Toro-Zhao [HMMTZ]
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Two main ingredients

Compactness argument used to show the small Carleson constant
case.

Extrapolation argument used to ”bootstrap” from the small to the
large Carleson constant case.

https://someonehastobringitup.wordpress.com/2012/04/22/magic-
exposing-our-magicians
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Small Carleson constant case I

Theorem [HMMTZ] : If Ω ⊂ Rn is a uniform domain with Ahlfors regular
boundary, L = −div (A∇ ) is a symmetric elliptic bounded operator with
constants 1 ≤ λ ≤ Λ <∞, ωL ∈ A∞(σ) and A satisfies [KP] with small
constant then Ω satisfies the exterior corkscrew condition.

Definition: We say that ωL ∈ A∞(σ) with constants κ and θ if for E ⊂ ∆
where ∆ = B(q, r) ∩ ∂Ω, q ∈ ∂Ω and r > 0

ω(E )

ω(∆)
≤ κ

(
σ(E )

σ(∆)

)θ
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Small Carleson constant case II

Theorem: [HMMTZ] Given n ≥ 3, M > 1, co > 1, 1 ≤ λ ≤ Λ <∞,
κ > 1 and θ ∈ (0, 1) there exist N > 1 and ε > 0 such that if Ω ⊂ Rn is a
bounded M-uniform domain whose boundary is Ahlfors regular with
constant co , L = −div (A∇ ) is a symmetric elliptic bounded operator with
constants λ and Λ, ωL ∈ A∞(σ) with constants κ and θ and

sup
0<r<diam Ω

sup
q∈∂Ω

1

rn−1

ˆ
B(q,r)∩Ω

δ(x)|∇A|2 dx < ε,

then Ω satisfies the exterior corkscrew condition with constant N. Here N
only depends on n, M, c0, λ, Λ, κ, and θ.
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Proof by contradiction I

Assume there is a set of allowable constants M, co , λ, Λ, κ, θ and
sequences Ωj of M uniform domains with co Ahlfors regular boundary,
Lj = −div (Aj∇ ) symmetric elliptic bounded operators with constants λ
and Λ, ωj = ωLj ∈ A∞(σj) with constants κ and θ and εj → 0, such that

sup
0<r<diam Ωj

sup
q∈∂Ωj

1

rn−1

ˆ
B(q,r)∩Ωj

δ(x)|∇Aj |2 dx < εj ,

and contrary to the conclusion there are qj ∈ ∂Ωj and rj ∈ (0, diam Ωj)
such that Ωj has no exterior corkscrew ball with constant N at the point
qj and radius rj .
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Proof by contradiction II

Define

Ω̃j =
1

rj
(Ωj − qj) , ∂Ω̃j =

1

rj
(∂Ωj − qj) , Ãj(x) = Aj(rjx + qj),

and σ̃j , ω̃j and ũj accordingly.

The limits of converging subsequences satisfy

Ω∞ is an M-uniform domain with Ahlfors regular boundary with
constant C (n)c2

o .

L∞ is constant coefficient elliptic operator with constants λ and Λ.

ωL∞ ∈ A∞(σ∞) with constants κ′(κ, co ,M, n) > 1 and θ.

Thus Ω∞ admits exterior corkscrew condition. This leads to a
contradiction.
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Extrapolation argument - Large Carleson constant case

Hofmann-Martell-Mayboroda [HMM]

Garnett-Mourgoglou-Tolsa [GMT]

The extrapolation condition implies that the small Carleson constant
condition holds on some interior sawtooth domains.

The corresponding elliptic measure satisfies the A∞ condition.

Those interior sawtooth domains are chord arc.

Then [HMM] + [GMT] ensure that the hypothesis of the
extrapolation theorem are satisfied.

Extrapolation +[HMM] + [GMT] ensure that Ω is chord arc.
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HAPPY BIRTHDAY STEVE!

Thank you to the organizers,
and participants for a wonderful conference.
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