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The Hilbert transform

The Hilbert transform Hf arose in 1905 in connection with Hilbert's

twenty-first problem, and for f € L2 (R) is defined almost everywhere by
the principal value singular integral

Hf (x) = p.v./ 1

f(y)dy

1
= lim / f(y)dy, aexelR
e—0 ly—x|>e Y — X

The convolution kernel of H
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The two weight problem

@ Problem: Given two locally finite positive Borel measures ¢ and w on
R, characterize the boundedness of H, from L? (0) to L? (w):

</}R|Haf|2dw>% <M (‘/Rflzda)%, fel?(o),

uniformly over all appropriate truncations of the operator T.
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The two weight problem

@ Problem: Given two locally finite positive Borel measures o and w on
R, characterize the boundedness of H, from L? (o) to L? (w):

(/RIHU"Ide)%S‘ﬁ(/leFda)%, fel®(o),

uniformly over all appropriate truncations of the operator T.
@ Here H,f = H (fo), and the appropriate truncations

(T()Rf /Kg;R Xy ()d(T(y), x € R,

are given by a family {175’R}0<(5<R<00 of nonnegative functions on

[0, 00) so that the truncated kernels Ksr (x,y) = 175 p (|x — y|) y%x
are bounded with compact support for fixed x or y.
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Toward a geometric characterization

The pivotal condition of NTV

@ In 2004 Nazarov, Treil and Volberg showed that if a weight pair
(w, o) satisfies the pivotal condition

3 1l Pl 3,0 < P2l s POL) = [T au ),
1P+ bl

and its dual for all decompositions of an interval Iy into subintervals /,,
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Toward a geometric characterization

The pivotal condition of NTV

@ In 2004 Nazarov, Treil and Volberg showed that if a weight pair
(w, o) satisfies the pivotal condition

[ee]

Z“’ (I"'X/() ) <7D2’I0‘(71 IV /’dV(X),
1P+ Ix =@l

r=1
and its dual for all decompositions of an interval ly into subintervals /,,

@ then the Hilbert transform H satisfies the two weight L? inequality
/\H(fa)]2dw gm/ I£|? do,

uniformly for all smooth truncations of the Hilbert transform,
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Toward a geometric characterization

The NTV conditions

e if and only if the weight pair (w, o) satisfies
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Definition (A, condition on steroids)

supP(l,w)-P(l,0) = Ay < o0,
I

E. Sawyer (McMaster University) Tb theorem May 29, 2018 5/51



Toward a geometric characterization

The NTV conditions

e if and only if the weight pair (w, o) satisfies

Definition (A, condition on steroids)

supP(l,w)-P(l,0) = Ay < o0,
I

@ as well as

E. Sawyer (McMaster University) Tb theorem May 29, 2018 5/51



Toward a geometric characterization

The NTV conditions

e if and only if the weight pair (w, o) satisfies

Definition (A, condition on steroids)

supP(l,w)-P(l,0) = Ay < o0,
/
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Definition (interval testing conditions)
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Toward a geometric characterization

The NTV conditions

e if and only if the weight pair (w, o) satisfies

Definition (A, condition on steroids)

supP(l,w)-P(l,0) = Ay < o0,
/

@ as well as

Definition (interval testing conditions)

/I|H(X,a)|2dw < 2|, and /I|H(X,w)|2d¢7§ ()21, -

@ A key innovation of NTV was the use of random grids that were
‘good’ with large probability - good in the sense that small intervals
too close to the boundary of a large grandparent could be safely
ignored.
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Energy and functional energy

@ Lacey, Sawyer and Uriarte-Tuero introduced another key innovation in
the energy condition (a refinement of NTV's pivotal condition):

. 00

Z |Ir, E Irvw (/r:X/‘T)2 < & LIPS Urzll’ '

a consequence of the testing conditions and the Muckenhoupt
condition, and where

/ ) 2 1/2
E(J,w) = (Ej“”mj“dm (\XMX |> ) |

E. Sawyer (McMaster University) Tb theorem May 29, 2018 6 /51



Energy and functional energy

@ Lacey, Sawyer and Uriarte-Tuero introduced another key innovation in
the energy condition (a refinement of NTV's pivotal condition):

. 00

L1 E(r@)*P (3i0) < E2011 1 =U, ik

a consequence of the testing conditions and the Muckenhoupt
condition, and where

/ ) 2 1/2
E(J,w) = (JE‘}’“’”IE‘}’“’X) (‘XMXI) ) |

@ A related functional energy condition replaced the Poisson term
P (I, x,0) with P (I, ho), and played a crucial role in handling the
‘far’ forms, which led to an indicator/interval characterization:

E. Sawyer (McMaster University) Tb theorem May 29, 2018 6 /51



The indicator/interval characterization
Unpublished

Theorem (Lacey, Sawyer, Shen and Uriarte-Tuero (2012))

The best constant M in the two weight inequality (1) for the Hilbert
transform satisfies

Nz~ A+ T+ T,

where J,J* are the best constants in the indicator/interval testing
conditions,

JIHAePw <l [IHAew)Pe <3,

for all intervals | and closed subsets E of |.
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The Nazarov Treil Volberg conjecture

A question raised in Volberg's 2003 CBMS book, known as the NTV
conjecture, was whether or not

/R\H(fa)|2wgm/R|f|2a, fel?(o), (1)

is equivalent to the A, condition and the two interval testing conditions.
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The NTV conjecture solved

@ In 2013 a third key innovation was provided by M. Lacey who found a
brilliant bottom /up stopping time and recursion argument needed to
control what was then a mysterious local term. The proof is in a two
part paper in Duke J. Math.: Part | (M.L., E.S., C.-Y.S., LU.-T.) and
Part Il (M.L.) with Lacey's local argument in the second part.

Theorem

The best constant N in the two weight inequality (1) for the Hilbert
transform, with no common point masses, satisfies

N~ VA + T+ T

i.e. Hy is bounded from L2 (0) to L2 (w) if and only if the A, and interval
testing conditions hold.

v
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@ In 2013 a third key innovation was provided by M. Lacey who found a
brilliant bottom /up stopping time and recursion argument needed to
control what was then a mysterious local term. The proof is in a two
part paper in Duke J. Math.: Part | (M.L., E.S., C.-Y.S., LU.-T.) and
Part Il (M.L.) with Lacey's local argument in the second part.

Theorem

The best constant N in the two weight inequality (1) for the Hilbert
transform, with no common point masses, satisfies

N~ VA + T+ T

i.e. Hy is bounded from L2 (0) to L2 (w) if and only if the A, and interval
testing conditions hold.

v

@ T. Hytonen included common point masses using ‘holes’ in the
Muckenhoupt conditions.
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Positive derivative of the kernel

@ The arguments in the proof are tied closely to the positivity of the
derivative K’ (x) of the Hilbert transform kernel K (x) = —1.
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Positive derivative of the kernel

@ The arguments in the proof are tied closely to the positivity of the
derivative K’ (x) of the Hilbert transform kernel K (x) = —1.

@ Indeed, this property underlies the necessity of the energy condition
for testing and Muckenhoupt, upon observing that for a positive
measure p supported outside the double 2J,

Hu (x) — Hu (x) 1 / 11
x — x/ x—=x"JrRos y—x y—x dpt(y)

1 1| P (J, 1g\out)
I d ~ T\ 7
9 ey =0 o ) * ) W]
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Positive derivative of the kernel

@ The arguments in the proof are tied closely to the positivity of the
derivative K’ (x) of the Hilbert transform kernel K (x) = —1.

@ Indeed, this property underlies the necessity of the energy condition
for testing and Muckenhoupt, upon observing that for a positive
measure p supported outside the double 2,

Hu(x)—Hu(x) 1 / 11
x —x' Cox—x R\2J ly—x y—x di(y)

P(J,1
1 1] di () (4, Lr\osm)

[l Jrias (y =x) (v =) g
@ and then using a ‘create/plug the hole’ argument,
L HSenergy ~ ZIE IR 1, 0 (x) = HLp o (X)) 2+ As |1,

with H1,, 0 = H1,0 — H1,,0, and finally using testing on / and all
the /..
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Improving the T1 theorem |

o G. David, J.-L. Journé and S. Semmes improved the T1 theorem for
Lebesgue measure by replacing the testing function 1 with a bounded
accretive function b, i.e. Reb > ¢ > 0. Applications include an ‘easy’
proof of the boundedness of the Cauchy operator on Lipschitz curves.
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o G. David, J.-L. Journé and S. Semmes improved the T1 theorem for
Lebesgue measure by replacing the testing function 1 with a bounded
accretive function b, i.e. Reb > ¢ > 0. Applications include an ‘easy’
proof of the boundedness of the Cauchy operator on Lipschitz curves.

@ M. Christ then further improved this Th theorem to a local Th
theorem for a single doubling weight on a homogeneous space in
which the testing functions are now a family b = {bg} of bounded
accretive functions indexed by ‘cubes’ Q.
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Improving the T1 theorem |

o G. David, J.-L. Journé and S. Semmes improved the T1 theorem for
Lebesgue measure by replacing the testing function 1 with a bounded
accretive function b, i.e. Reb > ¢ > 0. Applications include an ‘easy’
proof of the boundedness of the Cauchy operator on Lipschitz curves.

@ M. Christ then further improved this Th theorem to a local Th
theorem for a single doubling weight on a homogeneous space in
which the testing functions are now a family b = {bg} of bounded
accretive functions indexed by ‘cubes’ Q.

@ Further improvements, such as relaxing the integrability of the testing
functions b, and extending the weight to upper doubling, were then
made by many authors, including Auscher, David, Hytdonen, Hofmann,
Lacey, Martikainen, Muscalu, Nazarov, Tao, Thiele, Treil, and
Volberg, with applications to the solution of Painlevé's problem, the
Kato problem, and layer potentials.
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NTV advances

@ Building on the b-adapted Haar functions of David, Journé and
Semmes, and Coifman, Jones and Semmes, NTV used
measure-adapted Haar functions h’é’b with bounded testing functions

b = {bq}ocp and b-martingale differences ATPF (where in the
setting of T1, A‘f'lf = <f, h‘,7'1> h‘,T'1 is an orthogonal projection),

[
together with a key new technique of random grids supporting the

Haar functions, to reduce matters in the inner product

(Tf.8)y =13, ). / (Tg AT f) AT gdw

1€D Jeg

to the control of well-behaved pairs of intervals (/, J).
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together with a key new technique of random grids supporting the
Haar functions, to reduce matters in the inner product

(Tf. &), ZZ/ (To A7 F) AT gdaw
1eD Jeg

to the control of well-behaved pairs of intervals (/, J).
@ NTV then established frame inequalities for the martingale differences
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NTV advances

@ Building on the b-adapted Haar functions of David, Journé and
Semmes, and Coifman, Jones and Semmes, NTV used
measure-adapted Haar functions hg’b with bounded testing functions

b = {bq}gcp and b-martingale differences ATPF (where in the
setting of T1, A‘,T’lf = <f, h‘,7'1>a h‘,T'1 is an orthogonal projection),
together with a key new technique of random grids supporting the
Haar functions, to reduce matters in the inner product

T8y = L % [ (To 27" F) 5" gdo
1€D JegG

to the control of well-behaved pairs of intervals (/, J).
@ NTV then established frame inequalities for the martingale differences

A‘f'bf and their adjoints (A‘,”b> f, and
@ they established surgery to handle the difficult nearby inner products
i (Tg ATP f) A‘j’b* gdw when | and J are close in scale and

position.
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Hytonen-Martikainen and Lacey-Martikainen advances

@ Hytdnen- Martikainen obtained the one weight local Tb theorem for a

doubling weight assuming b € L? () and Tb in L° () for some
s > 2, introducing a new weaker notion of goodness to accommodate

the lack of orthogonal projections.
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Hytonen-Martikainen and Lacey-Martikainen advances

@ Hytdnen- Martikainen obtained the one weight local Tb theorem for a
doubling weight assuming b € L? () and Tb in L° (1) for some
s > 2, introducing a new weaker notion of goodness to accommodate
the lack of orthogonal projections.

@ Lacey-Martikainen obtained the one weight local Th theorem for an
upper doubling measure with testing functions b in L? (4) and Tb in
L2 (1), exploiting the fact that estimates involving Carleson
conditions many levels down can be absorbed.
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Hytonen-Martikainen and Lacey-Martikainen advances

@ Hytdnen- Martikainen obtained the one weight local Tb theorem for a
doubling weight assuming b € L? () and Tb in L° (1) for some
s > 2, introducing a new weaker notion of goodness to accommodate
the lack of orthogonal projections.

@ Lacey-Martikainen obtained the one weight local Tbh theorem for an
upper doubling measure with testing functions b in L2 (1) and Tb in
L2 (), exploiting the fact that estimates involving Carleson
conditions many levels down can be absorbed.

@ However, this argument uses methods of interpolation not
immediately available in the two weight setting.
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Improving the T1 theorem Il

@ This raises the question of finding a Th theorem for the Hilbert
transform involving two weights instead of one weight.
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Improving the T1 theorem Il

@ This raises the question of finding a Tbh theorem for the Hilbert
transform involving two weights instead of one weight.

@ However, an immediate difficulty is the control of the energy
condition by the Muckenhoupt and b-testing conditions when b
‘breaks’. As a consequence we include both the Muckenhoupt and
energy conditions in our characterization of the norm inequality.
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Improving the T1 theorem Il

@ This raises the question of finding a Tbh theorem for the Hilbert
transform involving two weights instead of one weight.

@ However, an immediate difficulty is the control of the energy
condition by the Muckenhoupt and b-testing conditions when b
‘breaks’. As a consequence we include both the Muckenhoupt and
energy conditions in our characterization of the norm inequality.

@ There is an example of Lacey, Sawyer and Uriarte-Tuero to show that
the Muckenhoupt and energy conditions alone do not suffice for the
norm inequality, but we do not know whether the Muckenhoupt and
b-testing conditions alone suffice.
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Definitions |

Weakly accretive complex-valued functions

@ A complex-valued function b on R is said to be accretive if
0<c<Reb(x)<|b(x)|<C<o0 x€eR.

Denote by P the collection of intervals in RR.
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Definitions |

Weakly accretive complex-valued functions

@ A complex-valued function b on R is said to be accretive if
0<c<Reb(x)<|b(x)|<C<o0 x€eR.

Denote by P the collection of intervals in R.

@ Let p > 2 and let u be a locally finite positive Borel measure on IR.
We say that a family b = {bq } ocp of functions indexed by P is a
p-weakly u-accretive family of functions on R if for all Q € P,

supportbg C Q ,

1al, Jo / bodu

1

< bolP d <G <o,
_<|Q‘y/ ‘ Q’ V) = b oo

0 < o<
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Definitions |

Weakly accretive complex-valued functions

@ A complex-valued function b on R is said to be accretive if
0<c<Reb(x)<|b(x)|<C<o0 x€eR.

Denote by P the collection of intervals in R.

@ Let p > 2 and let u be a locally finite positive Borel measure on IR.
We say that a family b = {bq } ocp of functions indexed by P is a
p-weakly p-accretive family of functions on R if for all Q € P,

supportbg C Q ,

1 P
b 7/b Pd < (p <00
i, /. ““ <|o|y oIl ”) sGse

@ Without loss of generality we may take bg real-valued.

O<Cb
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Definitions |l

b-testing conditions
@ Suppose ¢ and w are locally finite positive Borel measures on IR. The
b-testing and b*-testing conditions for H are given by
/ |HUbQ\2 do < P 1Ql, . for all intervals @,
Q

/]Hwbz,}zda < T7Q|, ., forall intervals Q.
Q
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Definitions Il

b-testing conditions

@ Suppose ¢ and w are locally finite positive Borel measures on IR. The
b-testing and b*-testing conditions for H are given by

/ |H(7bQ|2 do < %P 1Ql, . for all intervals @,
Q

/Q{HwbEPdU < ib*'*|Q\w , for all intervals Q.

@ T. Hytonen show that the full b-testing conditions for H,
/ ]Hng|2 dw < F3P° Ql, . for all intervals @,
JR

are controlled by the b-testing and Muckenhoupt conditions.
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A local two weight Tb theorem

Theorem (Sawyer, Shen and Uriarte-Tuero)

Suppose that o and w are locally finite positive Borel measures on the real
line R. Set Hy,f = H (fo) for any smooth truncation of T%, let p > 2 and
let b = {bq}gep and b* = {b*Q}QeP be p-weakly c-accretive families of
functions on R. Then the Hilbert transform H, is bounded from L? (o) to
L2 (w) with operator norm My uniformly in smooth truncations of H, ,
ie.

||Hg-’(5'Rf||L2(w) S mH ||fHL2(0') 0 f E [_2 ((T), 0 < 5 < R < oo,

if and only if the Muckenhoupt and energy conditions hold, and the
b-testing and b*-testing conditions for H both hold. Moreover, we have
the equivalence,

Ny~ T, + 3 + /AT + €
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Generalization to alpha-fractional singular integrals

@ Let 0 <a < 1. A standard a-fractional CZ kernel K*(x,y) is a
real-valued function defined on IR X IR satisfying the following for
some 6 > 0: For x # y,

[K* (x )| < Cez Ix =y [VK* (x,y)| < Cez [x —y[*7,

VNG
VK (xy) = VK ()| < Cez (221 y 2,
[x =y
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Generalization to alpha-fractional singular integrals

o Let 0 < a < 1. A standard a-fractional CZ kernel K*(x,y) is a
real-valued function defined on R x IR satisfying the following for
some 6 > 0: For x # y,

[K* (x )| < Cez Ix =y [VK* (x,y)| < Cez [x —y[*7,

!VK"‘ (x,y) — VK" (x’,y)| < Ccz <||); _>;||> |x —y\“72.

@ An a-fractional singular integral T* with kernel K* is elliptic if
|K* (x,y)| > c|x —y|**, and gradient elliptic if

d . d _
aK”(X,Y)y*(TyK“(XVY)ZC\X*Y\“ g ()
The Hilbert transform kernel K (x,y) = y%x is elliptic and (2) holds

with & = 0.
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Generalization to alpha-fractional singular integrals

o Let 0 < a < 1. A standard a-fractional CZ kernel K*(x,y) is a
real-valued function defined on R x IR satisfying the following for
some 6 > 0: For x # y,

[K* (x )| < Cez Ix =y [VK* (x,y)| < Cez [x —y[*7,

!VK"‘ (x,y) — VK" (x’,y)| < Ccz <||>; _>;||> |x —y\“72.

@ An a-fractional singular integral T* with kernel K* is elliptic if
|K* (x,y)| > c|x —y|*"", and gradient elliptic if

d d _

—K® ——K* >clx—y[*?. 2

= (x,y), d (x,y) > clx—y] (2)
The Hilbert transform kernel K (x,y) = y%x is elliptic and (2) holds

with & = 0.
o If T% is elliptic and gradient elliptic then

Nre & The + Tpo + /U5 + €5
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The one weight case

@ In the special case that ¢ = w = y and 0 < &« < 1, the classical
Muckenhoupt A5 condition is

QL 1@l
sup 11—« 11—«
QeP | Q| |Q|

which is precisely the upper doubling measure condition with
exponent 1 —«, i.e.

Q, < CL(Q)'™™,  forallintervals Q.
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The one weight case

@ In the special case that ¢ = w = y and 0 < & < 1, the classical
Muckenhoupt A3 condition is

Ql, @I,
erIQll QM

which is precisely the upper doubling measure condition with
exponent 1 — «, i.e.

|Q\V < CE(Q)lf'x, for all intervals Q.

@ Both Poisson integrals are then bounded,

« = ‘Q‘ k
PQu) < Y — 2 |kg| <C <o
@n 5 Kinar O
1—a
& - ‘Q‘ k
PY(Q, < 2°Q| < Gy < oo,
(@.#) E(%ron) a,
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One weight Tb theorems

@ The equal weight pair (p, p) satisfies not only the Muckenhoupt .45
condition, but also the strong energy condition £%:

x — Ejx 2
_r

© /P (], 10)\> 2 0
Z< |/r‘l > HX_EICruXHL2(1,,w)§CZ A

r=1 r=1

L2(1),w)

SCZ“f’wSC“‘w:C“‘U '
r=1

since w =0 = .
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One weight Tb theorems

@ The equal weight pair (i, p) satisfies not only the Muckenhoupt .45
condition, but also the strong energy condition £%:

x — E[’x 2
@

© /P (], 10)\? ) ad
(T - ey, < € X

r=1 r=1

L2(1,w)

SCZ“”wSClI‘w:C‘”U '
r=1

since w =0 = .

@ Thus our two weight Tb theorem, when restricted to a single weight
0 = w, recovers a weaker version of the one weight theorem of Lacey
and Martikainen for dimension n = 1 - weaker due to our assumption
that p > 2.
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Four difficulties with two weight Tb

Weak testing and the nearby terms

@ In order to control the dual martingale differences for ‘breaking’
children, i.e. when the testing function corresponding to a child is not
the restriction of the testing function of the parent, we need to follow
NTV in constructing coronas in which the restrictions don't change,
and for which the ‘breaking’ intervals satisfy a Carleson condition.
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Four difficulties with two weight Tb

Weak testing and the nearby terms

@ In order to control the dual martingale differences for ‘breaking’
children, i.e. when the testing function corresponding to a child is not
the restriction of the testing function of the parent, we need to follow
NTV in constructing coronas in which the restrictions don't change,
and for which the ‘breaking’ intervals satisfy a Carleson condition.

@ This makes the so-called ‘nearby’ inner products (T; by, b7), . i.e.
those in which the intervals | and J are close in both position and
scale, difficult to estimate due to the fact that the testing conditions
are lost in the corona, except at the tops of coronas, and are replaced
with just a weak testing condition.

E. Sawyer (McMaster University) Tb theorem May 29, 2018 21 /51



Four difficulties with two weight Tb
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@ In order to control the dual martingale differences for ‘breaking’
children, i.e. when the testing function corresponding to a child is not
the restriction of the testing function of the parent, we need to follow
NTV in constructing coronas in which the restrictions don't change,
and for which the ‘breaking’ intervals satisfy a Carleson condition.

@ This makes the so-called ‘nearby’ inner products (T3 by, bj) . i.e.
those in which the intervals / and J are close in both position and
scale, difficult to estimate due to the fact that the testing conditions
are lost in the corona, except at the tops of coronas, and are replaced
with just a weak testing condition.

@ In the one weight setting, special considerations such as boundedness
of Poisson integrals, are taken into account in handling nearby inner
products with random surgery, and are unavailable to us here.
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Four difficulties with two weight Tb

Weak testing and the nearby terms

@ In order to control the dual martingale differences for ‘breaking’
children, i.e. when the testing function corresponding to a child is not
the restriction of the testing function of the parent, we need to follow
NTV in constructing coronas in which the restrictions don't change,
and for which the ‘breaking’ intervals satisfy a Carleson condition.

@ This makes the so-called ‘nearby’ inner products (T3 by, bj) . i.e.
those in which the intervals / and J are close in both position and
scale, difficult to estimate due to the fact that the testing conditions
are lost in the corona, except at the tops of coronas, and are replaced
with just a weak testing condition.

@ In the one weight setting, special considerations such as boundedness
of Poisson integrals, are taken into account in handling nearby inner
products with random surgery, and are unavailable to us here.

@ We develop a recursive method for controlling the nearby form with
energy conditions and testing at the tops of the coronas - resurrecting
the original testing functions discarded during-the corona construetion:
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Four difficulties with two weight Tb

Paraproducts and weak Riesz inequalities

@ As shown by Hyténen and Martikainen, martingale differences fail to
satisfy two-sided frame-like and Riesz-like inequalities in the setting of
a Tb theorem when p = 2, complicating the treatment of
paraproducts.
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Four difficulties with two weight Tb

Paraproducts and weak Riesz inequalities

@ As shown by Hytoénen and Martikainen, martingale differences fail to
satisfy two-sided frame-like and Riesz-like inequalities in the setting of
a Tb theorem when p = 2, complicating the treatment of
paraproducts.

@ We assume p > 2 in the upper LP control of testing functions, and
then reduce this case to that of bounded testing functions using an
absorption and recursion argument. We then further reduce to the
case where the testing functions bg are reverse Holder on children Q.
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Four difficulties with two weight Tb

Paraproducts and weak Riesz inequalities

@ As shown by Hytoénen and Martikainen, martingale differences fail to
satisfy two-sided frame-like and Riesz-like inequalities in the setting of
a Tb theorem when p = 2, complicating the treatment of
paraproducts.

@ We assume p > 2 in the upper LP control of testing functions, and
then reduce this case to that of bounded testing functions using an
absorption and recursion argument. We then further reduce to the
case where the testing functions bg are reverse Holder on children Q.

@ For such families of testing functions, we prove two-sided weak frame
and Riesz inequalities for martingale and dual martingale differences
(except for lower Riesz inequalities for martingale differences, which
remain open but not needed), and that enable many of the T1 two
weight techniques to carry over here in the Tb setting. In particular
these are key to controlling paraproducts here.
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Four difficulties with two weight Tb

Weak goodness

@ Only a weaker form of goodness due to Hyténen and Martikainen is
available for use in two weight Tb theorems. Indeed, as emphasized
by Hyténen-Martikainen, we can no longer simply add back in bad
intervals whenever we want telescoping identities to hold.
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Four difficulties with two weight Tb

Weak goodness

@ Only a weaker form of goodness due to Hyténen and Martikainen is
available for use in two weight Tb theorems. Indeed, as emphasized
by Hyténen-Martikainen, we can no longer simply add back in bad
intervals whenever we want telescoping identities to hold.

e In fact, in the analysis of the form with ¢ (J) < £(/), it is necessary
to have goodness for the intervals J and telescoping for the intervals
I; and in the analysis of the form with £(J) > £ (1), it is necessary to
have just the opposite. Thus goodness can only be introduced after
we have restricted the sum to intervals J that have smaller side length
than /.
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Four difficulties with two weight Tb

Weak goodness

@ Only a weaker form of goodness due to Hyténen and Martikainen is
available for use in two weight Tb theorems. Indeed, as emphasized
by Hyténen-Martikainen, we can no longer simply add back in bad
intervals whenever we want telescoping identities to hold.

@ In fact, in the analysis of the form with ¢ (J) < £(/), it is necessary
to have goodness for the intervals J and telescoping for the intervals
I; and in the analysis of the form with £(J) > £ (1), it is necessary to
have just the opposite. Thus goodness can only be introduced after
we have restricted the sum to intervals J that have smaller side length
than /.

@ We accommodate weak goodness in controlling functional energy
with a different decomposition of the stopping intervals into
‘Whitney' intervals, and two independent families of grids, and in
bounding the stopping form by Lacey’s size functional on admissible
collections using the bottom/up corona construction of Lacey

together with an additional top/down ‘indented’ corona construction
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Four difficulties with two weight Tb

Montonicity and Energy Lemmas

@ Since dual martingale differences are not in general projections when
children ‘break’, the Monotonicity Lemma fails to hold in any of the
traditional forms arising in the setting of T1 theorems.
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Four difficulties with two weight Tb

Montonicity and Energy Lemmas

@ Since dual martingale differences are not in general projections when
children ‘break’, the Monotonicity Lemma fails to hold in any of the
traditional forms arising in the setting of T1 theorems.

@ We use the Lacey-Wick formulation from higher dimensions and
introduce an additional square function bound on the right hand side
involving an infimum of averages,

inf J| (EY |x—z2|)?,
ZERJ'e¢§en<J)| ol

summed over broken children.
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Four difficulties with two weight Tb

Montonicity and Energy Lemmas

@ Since dual martingale differences are not in general projections when
children ‘break’, the Monotonicity Lemma fails to hold in any of the
traditional forms arising in the setting of T1 theorems.

@ We use the Lacey-Wick formulation from higher dimensions and
introduce an additional square function bound on the right hand side
involving an infimum of averages,

inf I (EY|x — z|)?,

ZGRJ'&EQH(J) /'], (Eji [x = 2])
summed over broken children.

@ We also use the fact that the corresponding ‘unbroken’ dual
martingale differences form projections, but then we also need to
modify the testing function at the top of a corona, and also refine the
triple corona construction, so that dual martingale differences have
reverse Holder controlled averages on children (automatic for
doubling measures).
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Organization of the proof

@ We begin with three reductions on the testing functions, improving
behaviour at each step.
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Organization of the proof

@ We begin with three reductions on the testing functions, improving
behaviour at each step.

@ Then we use stopping conditions to construct coronas with control of
averages, accretivity of testing functions, weak testing of the
operator, control of stopping energy, and reverse Holder control on
children of the parent testing function.
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Organization of the proof

@ We begin with three reductions on the testing functions, improving
behaviour at each step.

@ Then we use stopping conditions to construct coronas with control of
averages, accretivity of testing functions, weak testing of the
operator, control of stopping energy, and reverse Holder control on
children of the parent testing function.

@ Then we define broken dual martingale differences in terms of the
corona construction of testing functions. We assume wlog that the
family b = {bg } g p Of testing functions indexed by P is an
oo-strongly o-controlled accretive family.
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Organization of the proof

@ We begin with three reductions on the testing functions, improving
behaviour at each step.

@ Then we use stopping conditions to construct coronas with control of
averages, accretivity of testing functions, weak testing of the
operator, control of stopping energy, and reverse Holder control on
children of the parent testing function.

@ Then we define broken dual martingale differences in terms of the
corona construction of testing functions. We assume wlog that the
family b = {bq } op of testing functions indexed by P is an
oo-strongly o-controlled accretive family.

@ Then we begin analysis of the bilinear form (T (fo), g),, with the
Hytonen-Martikainen decomposition, infusing weak goodness into the
main ‘below’ form and using the Monotonicity Lemma.
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Organization of the proof

@ We begin with three reductions on the testing functions, improving
behaviour at each step.

@ Then we use stopping conditions to construct coronas with control of
averages, accretivity of testing functions, weak testing of the
operator, control of stopping energy, and reverse Holder control on
children of the parent testing function.

@ Then we define broken dual martingale differences in terms of the
corona construction of testing functions. We assume wlog that the
family b = {bq } op of testing functions indexed by P is an
oo-strongly o-controlled accretive family.

@ Then we begin analysis of the bilinear form (T (fo), g), with the
Hytonen-Martikainen decomposition, infusing weak goodness into the
main ‘below’ form and using the Monotonicity Lemma.

@ Then we control the nearby form with a new recursive argument using
the energy stopping times and the ‘original’ testing functions.
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Organization of the proof

@ We begin with three reductions on the testing functions, improving
behaviour at each step.

@ Then we use stopping conditions to construct coronas with control of
averages, accretivity of testing functions, weak testing of the
operator, control of stopping energy, and reverse Holder control on
children of the parent testing function.

@ Then we define broken dual martingale differences in terms of the
corona construction of testing functions. We assume wlog that the
family b = {bq } op of testing functions indexed by P is an
oo-strongly o-controlled accretive family.

@ Then we begin analysis of the bilinear form (T (fo), g), with the
Hytonen-Martikainen decomposition, infusing weak goodness into the
main ‘below’ form and using the Monotonicity Lemma.

@ Then we control the nearby form with a new recursive argument using
the energy stopping times and the ‘original’ testing functions.

@ Finally we discuss control of functional energy and the stopping form

arg .
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Three reductions

@ For use in estimating the nearby terms, we first reduce to testing
functions b = {bq } op that satisfy the pointwise lower bound
property PLBP:

|bg (x)| > ¢ >0 for Q€D and p-ae. x €R,

for some positive constant c;.
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Three reductions

@ For use in estimating the nearby terms, we first reduce to testing
functions b = {bq } gcp that satisfy the pointwise lower bound
property PLBP:

|bg (x)| > c1 >0 for Q€D and p-ae. x €R,
for some positive constant ¢;.
@ Then in order to obtain frame and Riesz inequalities and control
paraproducts, we further reduce to the case of bounded weakly
accretive testing functions:

1
O<C<7/bd
b= ’Q|y QQIM

< bl oy < Co <00,
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Three reductions

@ For use in estimating the nearby terms, we first reduce to testing
functions b = {bq } gcp that satisfy the pointwise lower bound
property PLBP:

|bg (x)| > c1 >0 for Q€D and p-ae. x €R,

for some positive constant ¢;.

@ Then in order to obtain frame and Riesz inequalities and control
paraproducts, we further reduce to the case of bounded weakly
accretive testing functions:

< Jlbgl gy < Go < 0,

0<q < /bd
C"—‘w Qak

@ and finally, we use a corona construction to reduce to the case of
testing functions with reverse Holder control on children:

1
QT Jo bodﬂ‘>C|\1o'bo\Lw >0Q €¢(Q).[Q],>0Q€7
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Stopping conditions

@ Given Sy, define S (Sp) to be the maximal subintervals / C Sy so that

- /|f|d0>Co / If| do

1
P
W /Ibgodcr <y or <|/| /I\bsov’da) > TG
(% (%

2
or /I\Tg‘(bgo)\zdw>l"<§ba> 1, .

© (P (], |b :
or sup Z <(J | 5°|0> HP“"’
/DUJ,/:]_ |Jr|

> Cenergy [(63)2 +ng} |I|0 :

*2
L2(w)
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Stopping conditions

e Given Sp, define S (Sp) to be the maximal subintervals / C Sy so that

/|f|da> Comr / If| do

1
P
|I|/Ib50dcr <y or (M/I\bSOV’da) > TG
o o

2
or/I|Tg‘(b50)|2dw>1“<Tbu> 1,
< (P*(J,|b 2 .
or sup Z(U |S°|U)) HP(JUbe

IDUJr r=1 |Jr|

> Cenergy [(6%)24'%%} |I|¢7 :

*2
12(w)

@ Set S={S}U U Sp where Sp = S (So) and Sp41 = U S(S)
=0 Ses,
with a twist to obtain the reverse Holder condition on children.
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Martingale averages and differences of testing functions

@ Define the b-expectation operator IEé’b and the dual b-expectation

b . . .
operator IF% using the test function by in the corona Cjx:

ELPF(x) = 1q(x) /fbAdy Qela,

jQ bAd.”
b = -
FAPF (x) = 1g(x)ba(x) beAdV /Qfdy, Qely.
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Martingale averages and differences of testing functions

@ Define the b-expectation operator ]E’é,’b and the dual b-expectation

operator IF’é’b using the test function by in the corona Cjx:
E°F(x) = 1g(x) 1/ foady, Q€ Ca,
fQ bAd,u Q

b — 1
FAPF (x) = 1g(x)ba(x) beAdy/Qfdy, Qelu.

@ Then define the corresponding martingale and dual martingale
differences by

AEPF(x) = ( Y ELF( )—Eg"f(x).

Q'eC(Q)

D8P (x) = ( y ng'Pf(x)>—1ngf(x).
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Convergence of martingale differences

Both of the following identities hold pointwise p-almost everywhere, as
well as in the sense of strong convergence in L2 (u):

f= Y E°f+ Y O°F,
1€Dy 1€D: L(1)>N+1
b b
f= Y E”r+ ) APPF,
1€Dy 1€D: L(1)>N+1

provided that b = {bg} 5cp is an co-weakly p-controlled accretive family.
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Weak Riesz inequalities for controlled accretive families

@ We have ' weak upper Riesz' inequalities for pseudoprojections
b 1,b
WP =Y 000f

u,b
H‘FB f

i b ? W2
L2(p) = C,;:S HD’ fHU(y) + /;3 HV, fHL2(y) ' (3)

for all f € L? (u) and all subsets B of the grid D.
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Weak Riesz inequalities for controlled accretive families

@ We have ' weak upper Riesz' inequalities for pseudoprojections
b _ ub
=Yyesld)f

e, < c T, < B IV, o

L2(p)

for all f € L2 () and all subsets B of the grid D.

@ We have ‘weak lower Riesz’ inequalities:

(4

QZE:BHD%I)I[H;(W =¢ HP%fﬁ%#) + CQ;BHVZ”[ L2(p)

for all f € L2 (u) and all subsets B of the grid D.
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Weak Riesz inequalities for controlled accretive families

@ We have ' weak upper Riesz' inequalities for pseudoprojections
b _ ub
=Yyesld)f

e, < c T, < B IV, o

L2(w)
for all f € L2 () and all subsets B of the grid D.
@ We have ‘weak lower Riesz' inequalities:

C;B HDISbeiz(M) s¢ HngHi(m T CC;B Hvl:?fH;(y) ' (4)

for all f € L2 (1) and all subsets B of the grid D.

e For martingale differences A;"b, weak upper Riesz inequalities hold,
but are open for weak lower Riesz inequalities.
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Side length size decomposition

e First we decompose the bilinear form [ (T,f) gdw by interval side
length size:

/(Tgf)gdw = ) Z/(TgD‘,T'bf) D‘j’b*gdw

1€D JeG

=3 T+ ¥ (Tt Ot ede
1€D: JeG  1€D: Jeg
e<ey 0>

= O(f,g)+0" (f,g).
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Side length size decomposition

o First we decompose the bilinear form [ (T,f) gdw by interval side
length size:

[(Tehgdo = ¥ X [ (T05F) 05 gdo

1€D JeG

=Y 4y (Tt ot edw
1€D: JeG  IeD: JeG
AN<I s

O(f,g)+0O"(f,g).

@ By symmetry it suffices to estimate the first form © (f, g) (that
includes the diagonal).
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The Hytonen-Martikainen decomposition

@ Before introducing goodness into the sum, we follow Hytdnen and
Martikainen and split the form © (f, g) into 3 pieces:

O(fg) = Y / T,O7F) 05 gdw
1€D: JEG
¢)<e(h)

=Xy L o+ Y
1€D JEG: L(J)<L(1) JEG: £(N)<27PL(1)  JeG: 27PL(1)<L(J)<L(])
d(JN)>20(D) 0N d(J1)<20()ee(1) ¢ d(J,)<26(J) (1)

O1(f.g) +O2(f,g) +O3(f g) ,

4
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The Hytonen-Martikainen decomposition

@ Before introducing goodness into the sum, we follow Hyténen and
Martikainen and split the form © (f, g) into 3 pieces:

ofg)= ¥ [ (705 oy gde
leD: Jeg
o<t

=Xy X o+ Y o
IeD JeG: L(1)<L(1) JEG: L(N)<27PL(1)  JEG: 27PL(1)<b(J)<L(])
d(J.1)>20(DF (DT d(J,1)<20(0)80(1)1 d(J,N<20(N ()¢

= O)(f,g)+0:(fg)+0s3(f,g) ,

@ The disjoint form ®; (f, g) can be handled by ‘long-range’ and
‘mid-range’ arguments, and the nearby form @3 (f, g) will be handled
using surgery methods and a new recursive argument involving energy
conditions and the ‘original’ testing functions discarded in the corona
construction.

4
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Lemma (Monotonicity Lemma)

Suppose that | and J are intervals in R such that J C «vJ C | for some

v > 1, and that u is a signed measure on R supported outside |. Let

Y € L2 (w), that T* is a standard fractional singular integral on R with

0 < &« <1, and that b* is an co-weakly y-controlled accretive family on R.
Then

o w,b* < o w,b* *
(7w 09" %) | S GeCez @ (4 1nl) |O5*"¥ NG
where
" _ P D) | Ao || Plis (. [ul)
O (S lpl) = B 28|+ T Ik milli b

a2 2

) = +inf Y|, (B x —2])?

Lz(w) ZEIR-//EQ:broken(J)
e = oo, ¢ & L
L2(p) W) cepmend)

HA‘J"’b X

v
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Lemma (Energy Lemma)

Let J be an interval in G. Let Y, be an L? (w) function supported in J
with vanishing w-mean, and let H C G be such that J' C J for every

J' € H. Let v be a positive measure supported in R\ vJ with v > 1, and

for each J' € H, let dvy = ¢, dv with |@ | < 1. Suppose that b* is a
oo-weakly pi-controlled accretive family on R. Let T* be a standard
w-fractional singular integral operator with 0 < o < 1. Then we have

Y (T ), D‘;’xb*\ww‘

J'EH
< Z o (S, v \/Z HDw b*
J’eH JeH
P (J,v) T P (J,v)
< C H wb* 149 _
< 7( S o x| T = szl
. *
pub Yy :
XH AR | VETOR

n

v
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The goodness problem

@ The traditional method of introducing goodness is flawed here in the
setting of b-dual martingale differences, since these differences are no
longer orthogonal projections, and as emphasized by Hyténen and

Martikainen, we cannot simply add back in bad intervals whenever we
want telescoping identities to hold.
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The goodness problem

@ The traditional method of introducing goodness is flawed here in the
setting of b-dual martingale differences, since these differences are no
longer orthogonal projections, and as emphasized by Hytonen and
Martikainen, we cannot simply add back in bad intervals whenever we
want telescoping identities to hold.

@ In fact, in the analysis of the form © (f, g), it is necessary to have
goodness for the intervals J and telescoping for the intervals /. On
the other hand, in the analysis of the form ©* (f, g), it is necessary
to have just the opposite - namely goodness for the intervals / and
telescoping for the intervals J. This unfortunate set of circumstances
prevents us from introducing goodness in the full sum over all | and
J, prior to splitting according to side lengths of / and J.
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The goodness problem

@ The traditional method of introducing goodness is flawed here in the
setting of b-dual martingale differences, since these differences are no
longer orthogonal projections, and as emphasized by Hytonen and
Martikainen, we cannot simply add back in bad intervals whenever we
want telescoping identities to hold.

e In fact, in the analysis of the form © (f, g), it is necessary to have
goodness for the intervals J and telescoping for the intervals /. On
the other hand, in the analysis of the form ®* (f, g), it is necessary
to have just the opposite - namely goodness for the intervals / and
telescoping for the intervals J. This unfortunate set of circumstances
prevents us from introducing goodness in the full sum over all | and
J, prior to splitting according to side lengths of / and J.

@ However, one must work harder to introduce goodness directly into
the form © (f, g) after we have restricted the sum to intervals J that
have smaller side length than /. This is accomplished using the
weaker form of goodness introduced by Hyténen and Martikainen.
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Weak goodness

@ Forintervals R€ G and Q € D let k¥ (Q, R) = log; f% ; For R € G,

let x (R) =K (R’I‘, R) denote the smallest integer k, if it exists, such
that R is good with respect to all @ € D with £(Q) > 2X¢ (R).
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Weak goodness

e Forintervals R€ G and Q € D let k¥ (Q, R) = log; e(( )) For R e G,

let k (R) = x (R®, R) denote the smallest integer k, if it exists, such
that R is good with respect to all @ € D with £ (Q) > 2¥¢ (R).

e We define for k (R) < o0

L _k(R)
R* = s,

R,

where 7T R denotes the interval Q € D that contains R and has side
length £ (Q) = 2K/ (R), provided that such an interval Q exists (in
particular such Q exists for k > « (R) if x (R) < o).
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Weak goodness decomposition

@ We decompose

@ (f.g = Y. y / (To05F) 09 gde
1€D JeG: J2ZI, t(1)<27Pe(l
d(J,1)<20(J) /( N

+Y y / T,O70f) 05 gdw
1€D Jeg: J¥CI, 0(J)<2~
et

(f,

= O (f,g) + O (f,g) .
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Weak goodness decomposition

@ We decompose

@ (fg) = Y y /(TUD‘,T'bf) D‘J‘"b*gdw
1€D Jeg: J*4I, e(J)<2PL(l)
d(J,1)<20(J)¢e(1)

+y y / T, ) O gdaw
1€D Jeg: J¥CI, 0(J)<2~
d(J,h<20(Nee(l )
= O (f, g)+ 05 (f.g) .
o The bad form @5 (f, g) satisfies
EgEg)GBad (f, g) < Cgood2_(£_E )rmT“ Hf||L2(U) HgHLZ(w) '

by the arguments in [HyMa], and so can be absorbed.
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The nearby form |

@ We prove the following lemma that controls the expectation, over two
independent grids, of the nearby form O3 (f, g).

Lemma

Suppose T* is a standard fractional singular integral with 0 < o« < 1. Let
0<d6<1. Forfel?(c)andg € L?(w) we have

AL X [(m(@t) .ot ©
1€D JeG: 2-PL(1)<b(J)<L(l)
d(J,1)<20(J)5e(1)'*

* % " won 1 " ”
< (zﬁwﬁ:' A+ +\/f_5‘ﬁra) 11l Nl o)

v
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The nearby form |

@ We prove the following lemma that controls the expectation, over two
independent grids, of the nearby form O3 (f, g).

Lemma

Suppose T* is a standard fractional singular integral with 0 < o« < 1. Let
0<d6<1. Forfel?(c)andg € L?(w) we have

AL X [(m(@t) .ot ©
1€D JeG: 27PL(1)<L(J)<L(l)
d(J,1)<20(J)5e(1)'*

* % " won 1 " ”
S (SR VAT + 28 V) [l el

v

@ Since Poisson integrals are no longer bounded, a new idea is needed.
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The nearby form |

@ We prove the following lemma that controls the expectation, over two
independent grids, of the nearby form O3 (f, g).

Lemma

Suppose T* is a standard fractional singular integral with 0 < o« < 1. Let
0<d6<1. Forfel?(c)andg € L?(w) we have

AL X [(m(@t) .ot ©
1€D JeG: 27PL(1)<L(J)<L(l)
d(J,1)<20(J)5e(1)'*

* % " won 1 " ”
S (SR VAT + 28 V) [l el

v

@ Since Poisson integrals are no longer bounded, a new idea is needed.
@ We use the original testing functions bjmg for I, discarded when
constructing the corona Cy, as well as by = 1,ba.
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The nearby form Il

The original testing function trick

@ For subsets E, F C AN B and intervals K C AN B we define

{E.F} = (T;(balg) bglf), .
Kin = K\9d;K and Koyt = K N9sK
{K, K} - {A, Kin} - {A\ K, Kin} + {Kouh Kout} + {Kinv Kout} -
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The nearby form Il

The original testing function trick

@ For subsets E, F C AN B and intervals K C AN B we define

{E.F} = (T; (balg),bplr), .
Kin K\ 9;K and Kout = K NosK ,
{K, K} = {A, Kin} - {A\ K, Kin} + {Kouty Kout} + {Kinv Kout} .

@ The first two terms on the right side satisfy

» Rin = o DA BUJ_King’AQ Kin p
1K) = | [ (T20a) byow] < 1k, Teballre 1 5
P* (Kin, |ba| 1
AV K k)| 5 DS oAt g /. 163 de,
|Ki1’1’ Kin
Orlg

upon using the trick with the original testing function b
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The nearby form Ill

The recursion

@ For K an interval, we write Kout = Kieft U Kright where Kiegt and
Kright are the two small subintervals on the left and right hand sides
of K respectively, and then we have

{Koutv Kout} - {Kleftv Kleft} + {Krightv Kright} + {Kleftv Kright} + {Krightr
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The nearby form IlI

The recursion

e For K an interval, we write Kout = Kleft U Kright where Kiegt and
Kiight are the two small subintervals on the left and right hand sides
of K respectively, and then we have

{Kout: Kout} = {Kleft: Kleft} + {Krightv Kright} + {Kleftv Kright} + {Krightv
@ We define a collection of intervals M = M (K) by recursion,

Mo = {K},
M1 U { Miett, Miigne : M € My}, k>0,

M = M(K)= ] My,
k=0

so that
M = {K, Kleftx Kright: (Kleft)left ' (Kleft>right 1 (Kright)left ' (Kright)right yoees
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The nearby form IV

The preliminary estimate

{K.K}— ), [{l\/lin, Mout} — { Mout, Min}orig]
MeM(K)

- Z [{Mleftv Mright} + {Mrightv Mleft}] ‘
MeM,

f;¢ Y mmmmm@¢ Y ubsll,

MeM(K) MeM(K)
P (Mip, |bal o) ]° b || %2 .2
+J L [ [Min| L YD g 151 e
MeM m MeM in

< (Trores+ 0 TAT) I 1
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Control of functional energy

@ This argument remains essentially the same with only two changes:

@ Weak goodness is used in place of usual goodness via consideration of
pairs (/,J) € D x G with JE ; I. Here J¥ is the smallest interval K
in G such that J is good in K and beyond.

@ Broken martingale differences of testing functions are used in place of
the usual Haar differences.
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Control of functional energy

@ This argument remains essentially the same with only two changes:

@ Weak goodness is used in place of usual goodness via consideration of
pairs (/,J) € D x G with JE ; I. Here J¥ is the smallest interval K
in G such that J is good in K and beyond.

@ Broken martingale differences of testing functions are used in place of
the usual Haar differences.

@ However, in the proof that functional energy is controlled by the
Muckenhoupt and energy conditions, it can now happen that an
interval J € G can ‘cut across' an interval | € D, resulting in
additional terms to be treated.
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Control of the stopping form

@ As in Lacey we construct £ -coronas from the ‘bottom up’ with

112
stopping times involving the energies D‘J‘”b HLQ( ) but then overlay
w

this with an additional top/down ‘indented’ corona construction H in
order to accommodate the weaker goodness of Hyténen and
Martikainen.
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Control of the stopping form

@ As in Lacey we construct £ -coronas from the ‘bottom up’ with

112
stopping times involving the energies D(J‘”b HLQ( X but then overlay
w

this with an additional top/down ‘indented’ corona construction H in
order to accommodate the weaker goodness of Hyténen and
Martikainen.

e We directly control the pairs (/, J) in the stopping form according to
the £ -coronas to which | and J* are associated as follows:

@ by absorbing the case when both / and J* belong to the same
L -corona, and

@ by using the Straddling and Substraddling Lemmas and the
Orthogonality Lemma to control the case when / and J¥ lie in
different coronas, with a geometric gain coming from the separation
of the indented H-coronas.
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Lacey's bottom/up corona |

@ For an A-admissible collection P of pairs, define an atomic measure
wp in the upper half space IR%r by

wp= ¥ [agtA
Jell, P

a2 5
2wy (emt(9%))
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Lacey's bottom/up corona |

@ For an A-admissible collection P of pairs, define an atomic measure
wp in the upper half space IRi by
A2
_ b*
PO C il I OED)
@ Define the tent T (K) over an interval K = L to be T (L) where

T (L) is the convex hull of the interval L x {0} and the point
(c, ¢ (L)) € R2, and the size functional of P by

(K, 1 o ’
1K1| (P (K\KA\K )> wp (T(F)).

SuA (’P)2 =  sup

size
Ke Htl)elow P
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Lacey's bottom/up corona |

@ For an A-admissible collection P of pairs, define an atomic measure
wp in the upper half space IRi by

. || 2
= AN )
“p Je%?? H 7 M 2w Ot (%))

o Define the tent T (K) over an interval K = L to be T (L) where
T (L) is the convex hull of the interval L x {0} and the point
(cL, £ (L)) € R%, and the size functional of P by

1 <Pw (K{;f\'@) wp (T (K))

@ The generation Ly consists of the minimal dyadic intervals K in
H}felowp such that

¥ (K P)? _ (P (K 1ak0)
Kle K]

A 2 _
Sine(P)" = sup 7
K eITgelowp K]y

size

) wp (T (K)) > eSS (P)2.

E. Sawyer (McMaster University) Tb theorem May 29, 2018 44 / 51



Lacey's bottom/up corona Il

@ Choose p = 1+ ¢ and define a sequence of generations {L,}>_, and
coronas by letting L, consist of the minimal dyadic intervals L in
H?elOWP that contain an interval from some previous level L,
¢ < m, such that

wp (T (L)) > pwp <UT (L):L'e mJ Lyand L' C L) :

(=0
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Lacey's bottom/up corona Il

o Choose p = 1+ ¢ and define a sequence of generations {L,}>_, and
coronas by letting £, consist of the minimal dyadic intervals L in
Hlfelowp that contain an interval from some previous level L,
¢ < m, such that

m—1
wp (T (L)) > pwp (UT(L’) e |J Lyand L' C L) .
(=0
@ For L € L, denote by C; the corona associated with L in the tree £,
CLE{KED:KCLandthereisnoL’GEwithKCL’;L},

and define the shifted L-corona by
CC shift _ {J cqg: J>I< e CE }
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Lacey's bottom/up corona Il

o Choose p = 1+ ¢ and define a sequence of generations {L,}>_, and
coronas by letting £, consist of the minimal dyadic intervals L in
Hlfelowp that contain an interval from some previous level L,
¢ < m, such that

m—1
wp (T (L)) > pwp (UT(L’) e |J Lyand L' C L) .
/=0
@ For L € L, denote by C; the corona associated with L in the tree L,
CLE{KED:KCLandthereisnoL’EEwithKCL’;L},
and define the shifted L-corona by

CLshift = {Jeg J¥ e et }

@ The parameter m in L, refers to the level at which the stopping
construction was performed, but for L € L,,, the corona children L’ of
L are not all necessarily in £, 1, but may be in £,,_; for t large.
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The indented corona

@ To address the lack of goodness in H}felowp we introduce an
additional top/down stopping time over the collection £. Given the
initial generation

Ho = Ly = {maximal L€ L} = {maximal I € Hlfelowp} :

define subsequent generations H as follows.
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The indented corona

@ To address the lack of goodness in H?EIOWP we introduce an
additional top/down stopping time over the collection £. Given the
initial generation

Ho = Ly41 = {maximal L€ L} = {maximal | e H?EIOWP},

define subsequent generations Hj as follows.
@ For k > 1 and each L € Hj_1, let

Hy (H) = {maX|ma| L'er: 3l c L}

and set Hy = | J Hi(L). Finally set H = U H.
LeH 1 k=0
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The indented corona

@ To address the lack of goodness in H?EIOWP we introduce an
additional top/down stopping time over the collection £. Given the
initial generation

Ho = Ly41 = {maximal L€ L} = {maximal | e H?EIOWP},

define subsequent generations Hj as follows.
@ For k > 1 and each L € Hj_1, let

Hy (H {maX|ma| L'erl: 3l c L}

and set H, = U Hy (L). Finally set H = U Hy.
LeH, 4 k=0
@ We refer to the stopping intervals L € H as indented stopping
intervals since 3L C 7ty L for all L at indented generation one or more,
i.e. each successive such L is ‘indented’ in its H-parent. This property
of indentation is precisely what is required in order to generate
geometric decay from the straddling lemma in indented generations.
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Endpoint towers

@ For L € Hy and t > 0 apply the straddling lemma to

Pl = {(I,J) eP:leCl, Je " for some L' € Hyye, L' C L}
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Endpoint towers

@ For L € Hy and t > 0 apply the straddling lemma to

Pl = {(I,J) ceP:leClt Je CZ“,{'Shift for some L' € Hyys, L' C L}

@ Within the H-corona C}? there are further intervals T € £\ H, but
these are contained in the two endpoint towers

Tett (L) = {L'eL:L'CLand left (L) =left(L)},
Tight (L) = {L'eL:L'CLand right (L") =right (L)},
where left (/) and right (/) denote the left and right hand endpoints
of I respectively. Let Tier (L) = {L“},_ o- We ignore Tyigne (L) as it

can be handled similarly,
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Left /right decomposition

@ For L € H and t = 0 we decompose
,PZ—‘O = PH sma/IUpH big .

Pl = {unePly:aeT (), Sl ciy.
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Left /right decomposition

@ For L € H and t = 0 we decompose
,PZ{O = PZ"[()—sma/lUPZ"l(;big;

PrE = {(/,J)epﬁo:aueT(L),J*cL’c/}.

@ Then we further decompose

H big '

7) : U {R le“ rlght} (Uk IR 18&) (Uk 1R rlght
Rﬁfight = {(/v _j) c 7)7'[ big . 4 c kar?strlct and JX nght}
Rflkeﬁ = {(Iv J) € 7)7'[ big . 4 c kar?strict and

JC L, or "= 1¥and JC Lrlght } :
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Corona diagram

Lacey’s bottom /up stopping times in red segments, and the indented stopping times in

blue rectangles around red segments

Lleft Lright
|
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Straddling on right and Substraddling on left

@ Now apply the Straddling Lemma to the ‘right’ admissible collection
Q=U lR with § = {Lfl ht} to obtain the estimate
rlght 8 k=1

AU RLk
n right CSA A (PH blg)

stop, [« size
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Straddling on right and Substraddling on left

@ Now apply the Straddling Lemma to the ‘right’ admissible collection
. _ k o . .
Q=U- IRLflgm with S = {Lright}k:1 to obtain the estimate

AU Rfk.h A (b
right
Mygpre " < CSSA (P57E)

s1ze

Ao RE,
@ As for the remaining ‘left’ form |B|stop o (f,g), we note that if
the interval pair (/,J) € RLk , then there is a unique interval

K € W (L) that contains J, and moreover we have the crucial
inclusion 3K C I (because J* G
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Straddling on right and Substraddling on left

@ Now apply the Straddling Lemma to the ‘right’ admissible collection

Q=U RE N with S = {Lll'(ight}k  to obtain the estimate
rlg =
AU Rfk
right - o, A H—big
mstop,l]w CSsue (P ) )

A,U‘;’,Onﬁk
@ As for the remaining ‘left’ form |B| et (f,g), we note that if
the interval pair (/,J) € RLk :

K € W (L) that contains J, and moreover we have the crucial
inclusion 3K C I (because J¥ C /).
@ Thus the admissible collection Q Uro 72 substraddles the

interval L, and the Substraddling Lemma ylelds the bound

A U= OR
eft «,A «,A H—bj,
Nn e < cse (U R M) < csyA (Pl "e).

stop, 1
then there is a unique interval

stop, [« size size
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Open problems

@ Does the two weight Tb theorem remain true in the case p = 2, i.e.
when b = {bg } ocp is a 2-weakly c-accretive family of functions, and
b* = {ba}er is a 2-weakly w-accretive family of functions? (True
when p = 2 for one weight by Lacey-Martikainen, suspect false for
two weights when p = 1.)
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Open problems

@ Does the two weight Tb theorem remain true in the case p = 2, i.e.
when b = {bg } ocp is a 2-weakly o-accretive family of functions, and
b* = {b*Q}QeP is a 2-weakly w-accretive family of functions? (True
when p = 2 for one weight by Lacey-Martikainen, suspect false for
two weights when p = 1.)

@ Does the energy condition follow from just the Muckenhoupt and
b-testing conditions? (even if we assume 1 < by < C)

@ To what extent does the two weight Tbh theorem hold in higher
dimensions? (the energy condition is no longer necessary)

@ It is known that the energy conditions are not necessary for
boundedness of elliptic operators in dimension 1 (Sawyer, Shen and
Uriarte-Tuero) and for Riesz transforms in dimension n > 2 (Sawyer).
What is an effective substitute?
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Open problems

@ Does the two weight Tb theorem remain true in the case p = 2, i.e.
when b = {bg } ocp is a 2-weakly o-accretive family of functions, and
b* = {b*Q}er is a 2-weakly w-accretive family of functions? (True
when p = 2 for one weight by Lacey-Martikainen, suspect false for
two weights when p = 1.)

@ Does the energy condition follow from just the Muckenhoupt and
b-testing conditions? (even if we assume 1 < by < C)

@ To what extent does the two weight Tbh theorem hold in higher
dimensions? (the energy condition is no longer necessary)

@ It is known that the energy conditions are not necessary for
boundedness of elliptic operators in dimension 1 (Sawyer, Shen and
Uriarte-Tuero) and for Riesz transforms in dimension n > 2 (Sawyer).
What is an effective substitute?

@ Thanks to the organizers Chema, Svitlana and Simon!
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