Fatou Theorems in UR Domains

Marius Mitrea University of Missouri

Joint work with Dorina Mitrea and Irina Mitrea

ICMAT May 26, 2018

Marius Mitrea (MU)

Motivation

Let \mathbb{D} be the unit disk in the complex plane. Given $u: \mathbb{D} \to \mathbb{C}$, for some fixed $\kappa > 0$ define its κ -nontangential boundary trace as

$$(u|_{\partial \mathbb{D}}^{\kappa-\mathrm{n.t.}})(z) := \lim_{\substack{|\zeta-z| < (1+\kappa)(1-|\zeta|)\\ \zeta \longrightarrow z}} u(\zeta) \text{ for } z \in \partial \mathbb{D}.$$

Here is a classical result originating in Fatou's 1906 work:

 $\begin{array}{l} \text{if } u\,:\,\mathbb{D}\,\rightarrow\,\mathbb{C} \text{ is holomorphic and bounded then for each} \\ \kappa>0 \text{ the trace } \big(u\big|_{\partial\mathbb{D}}^{\kappa-\mathrm{n.t.}}\big)(e^{i\theta}) \text{ exists at } \mathcal{L}^1\text{-a.e. } \theta\in[0,2\pi), \end{array}$

In general, one cannot hope for a better conclusion since Lusin has proved (in 1919) that

for any Lebesgue measurable set $E \subseteq [0, 2\pi)$ with $\mathcal{L}^1(E) = 0$ there exists a bounded holomorphic function $u : \mathbb{D} \to \mathbb{C}$ whose radial limit $\lim_{r \to 1^-} u(re^{i\theta})$ fails to exist for each angle $\theta \in E$.

Also, insisting that the limit is taken from within nontangential approach regions is both natural and optimal in the context of Fatou's theorem.

Marius Mitrea (MU)

Motivation

Indeed, Littlewood has given an example of a bounded holomorphic function in \mathbb{D} which diverges almost everywhere along rotated copies of any fixed, given curve in the unit disk, which ends tangentially to $\partial \mathbb{D}$. One thing one can do is to relax the boundedness demand on the holomorphic function u by the membership

$$\mathbb{N}_{\kappa} u \in L^{p}(\partial \mathbb{D}, \mathcal{H}^{1}), \quad 0$$

for some, or all, $\kappa \in (0,\infty)$, where the nontangential maximal function $\mathcal{N}_{\kappa} u$ is defined as

$$(\mathfrak{N}_{\kappa}u)(z):=\sup_{|\zeta-z|<(1+\kappa)(1-|\zeta|)}|u(\zeta)|,\qquad orall z\in\partial\mathbb{D}.$$

This leads to the consideration of Hardy spaces

$$\mathscr{H}^p(\mathbb{D}) := ig \{ u \in \mathscr{O}(\mathbb{D}) : \, \mathbb{N}_\kappa u \in L^p(\partial \mathbb{D}, \mathbb{H}^1) ig \}, \quad 0$$

Motivation/Goals

Thus, the nontangential boundary trace takes you

$$\mathscr{H}^{p}(\mathbb{D}) \ni u \mapsto u \big|_{\partial \mathbb{D}}^{\kappa-\mathrm{n.t.}} \in L^{p}(\partial \mathbb{D}, \mathcal{H}^{1})$$

and, at least if p > 1, the Cauchy integral operator goes the other way

$$\mathscr{C}: L^p(\partial \mathbb{D}, \mathcal{H}^1) \to \mathscr{H}^p(\mathbb{D})$$

Classical work:

J.Garcia-Cuerva, "Weighted H^p spaces" 1979, Dissertationes Math., C.Kenig, "Weighted H^p spaces on Lip domains" 1980, Amer. J. Math. **Present Goals**:

Develop a theory which retains the aforementioned features, which can accommodate classes of domains and operators (generalizing the unit disk and Cauchy-Riemann operator) in the nature of best possible. Want to work with subdomains of manifolds and differential operators acting between vectors bundles, so it's all about real-variable techniques.

Class of Operators

Given an arbitrary $N \times M$ homogeneous first-order system with constant complex coefficients in \mathbb{R}^n

$$D = \sum_{j=1}^{n} A_j \partial_j, \quad A_j \in \mathbb{C}^{N \times M},$$

recall that its principal symbol is defined as the $N \times M$ matrix

$$\operatorname{Sym}(D;\xi) := i \sum_{j=1}^{n} \xi_j A_j, \quad \forall \xi = (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n.$$

Call D injectively elliptic if

 $\mathrm{Sym}\,(D\,;\xi):\mathbb{C}^M\to\mathbb{C}^N\ \text{ is injective for each }\ \xi\in\mathbb{R}^n\setminus\{0\}.$

Call $\Sigma \subset \mathbb{R}^n$ a UR set provided Σ is closed, upper ADR, and has BPLI. Call an open set $\Omega \subseteq \mathbb{R}^n$ a UR domain provided $\partial\Omega$ is a UR set and $\mathcal{H}^{n-1}(\partial\Omega \setminus \partial_*\Omega) = 0$.

The latter condition amounts to having the outward unit normal ν defined \mathcal{H}^{n-1} -a.e. on $\partial\Omega$.

Figure: A UR domain which does not satisfy the corkscrew condition (int/ext)

Theorem (Fatou in UR Domains)

Let $\Omega \subset \mathbb{R}^n$ be a UR domain. Denote $\sigma := \mathcal{H}^{n-1}\lfloor \partial \Omega$ and fix $\kappa > 0$. Let D be an injectively elliptic homogeneous first-order $N \times M$ system with constant complex coefficients in \mathbb{R}^n . Finally, let $u : \Omega \to \mathbb{C}^M$ satisfy

$$\mathcal{N}_{\kappa} u \in L^{p}(\partial\Omega, \sigma) \quad \text{with} \quad p \in \left(\frac{n-1}{n}, \infty\right),$$

and $Du = 0 \quad \text{in} \quad [\mathcal{D}'(\Omega)]^{N}.$

Then the nontangential boundary trace $u\Big|_{\partial\Omega}^{\kappa-n.t.}$ exists (in \mathbb{C}^M) at σ -a.e. point on $\partial\Omega$ and, if p > 1, there exists a "Cauchy operator"

$$\mathscr{C}: L^p(\partial\Omega,\sigma) o \left\{w: D^*Dw = 0 \text{ and } \mathcal{N}_\kappa w \in L^p(\partial\Omega,\sigma)
ight\}$$

allowing us to recover u from the said trace, i.e.,

$$u = \mathscr{C}\left(u\Big|_{\partial\Omega}^{\kappa-\mathrm{n.t.}}
ight)$$
 in Ω .

Comments

- The theorem is sharp (having Ω a UR domain and D injectively elliptic are necessary).
- \bullet When $p\in(1,\infty),$ the "Cauchy reproducing formula" yields

$$\left\|\mathfrak{N}_{\kappa}u\right\|_{L^{p}(\partial\Omega,\sigma)}\approx\left\|u\right|_{\partial\Omega}^{\mathrm{n.t.}}\left\|_{[L^{p}(\partial\Omega,\sigma)]^{M}}\right\|_{L^{p}(\partial\Omega,\sigma)}$$

which may be interpreted as an L^p -Maximum Principle for null-solutions u of D in Ω .

 Specializing our Fatou theorem to the case when n = 2 and D := ∂, the Cauchy-Riemann operator (hence, M = N = 1), yields:

any holomorphic function u in a UR domain $\Omega \subseteq \mathbb{C}$ satisfying $\int_{\partial\Omega} (\mathcal{N}_{\kappa}u)^{p} d\mathcal{H}^{1} < \infty$, for some $\kappa > 0$ and $p > \frac{1}{2}$, has the property that $u \Big|_{\partial\Omega}^{\kappa-n.t.}$ exists in \mathbb{C} at \mathcal{H}^{1} -a.e. point on $\partial\Omega$.

• Same result holds for the Clifford-Dirac operator $D := \sum_{i=1}^{n} e_i \odot \partial_i$.

• Holomorphic functions of several complex variables also fit into this framework by considering the first-order injectively elliptic operator $D := (\partial_{\bar{z}_j})_{1 \le j \le n}$. Specifically, the following Fatou-type result holds:

any holomorphic function u in a UR domain $\Omega \subseteq \mathbb{C}^n$ with $\int_{\partial\Omega} (\mathcal{N}_{\kappa} u)^p d\mathcal{H}^{2n-1} < \infty$ for some $\kappa > 0$ and $p \in (\frac{2n-1}{2n}, \infty)$, has the property that $u \Big|_{\partial\Omega}^{\kappa-n.t.}$ exists at \mathcal{H}^{2n-1} -a.e. point on $\partial\Omega$.

 Similar results are valid when D is the Hodge-Dirac operator d + δ (where d, δ are, respectively, the exterior derivative operator and its formal adjoint, acting on differential forms), and its complex counterpart D = ∂ + ϑ where ∂ is the d-bar operator in the several complex variable theory and ϑ is its Hermitian adjoint.

Traces: Warm-Up

Given an \mathcal{L}^n -measurable function $u: \Omega \to \mathbb{C}$ define at each $x \in \partial \Omega$ $(\mathfrak{P}u)(x) := \sup_{0 < r < 2 \operatorname{diam}(\partial \Omega)} \left\{ \frac{1}{\sigma(\partial \Omega \cap B(x,r))} \int_{\Omega \cap B(x,r)} |u| \, d\mathcal{L}^n \right\} \in [0,\infty].$

Theorem (A)

Let $\Omega \subseteq \mathbb{R}^n$ be open, ADR boundary, and $\mathcal{H}^{n-1}(\partial \Omega \setminus \partial_* \Omega) = 0$. Denote by ν its GMT outward unit normal, and fix $\kappa > 0$. Let D be an $N \times M$ homogeneous first-order system D with constant complex coefficients in \mathbb{R}^n . Let $u : \Omega \to \mathbb{C}^M$ be \mathcal{L}^n -measurable such that

 $\mathcal{N}_{\kappa} u \in L^{1}(\partial\Omega, \sigma)$ and $u\Big|_{\partial\Omega}^{\kappa-\mathrm{n.t.}}$ exists σ -a.e. on $\partial\Omega$.

Also assume that $Du \in [L^1_{loc}(\Omega)]^N$ and satisfies $\mathfrak{P}(Du) \in L^1(\partial\Omega, \sigma)$. Then, in a quantitative sense,

$$\operatorname{Sym}(D;\nu)(u\big|_{\partial\Omega}^{\kappa-\mathrm{n.t.}})\in \left[H^{1}(\partial\Omega,\sigma)\right]^{N}$$

As a special case of Theorem A, consider the scenario in which $u := \nabla w$ for some scalar-valued function

 $w \in \mathscr{C}^{\infty}(\Omega)$ which is harmonic in Ω , and for some $\kappa > 0$ satisfies $\mathcal{N}_{\kappa}(\nabla w) \in L^{1}(\partial\Omega, \sigma)$ and has the property that the nontangential trace $(\nabla w) \Big|_{\partial\Omega}^{\kappa-n.t.}$ exists σ -a.e. on $\partial\Omega$.

Then our theorem, used with D := div (which annihilates *u* and whose symbol is the dot product), gives that the normal derivative

 $\partial_{\nu} w := \nu \cdot \left((\nabla w) \Big|_{\partial \Omega}^{\kappa - n.t.} \right)$ belongs to the Hardy space $H^1(\partial \Omega, \sigma)$.

The case when Ω is a Lipschitz domain has been treated by B. Dahlberg and C. Kenig (1987), using a conceptually different approach (based on duality and Varopoulos' extension theorem).

The next step is to extend this trace result to the case when p < 1. Since, in this scenario, the Hardy space $H^p(\partial\Omega, \sigma)$ consists of "distributions" (i.e., linear continuous functionals on $\operatorname{Lip}_c(\partial\Omega)$), we need to interpret $\operatorname{Sym}(D;\nu)$ acting on u as a distribution on the boundary (rather than the pointwise sense considered earlier).

Fix an arbitrary first order $N \times M$ system D. Let $\Omega \subseteq \mathbb{R}^n$ be an arbitrary open set and suppose $u \in [L^1_{bdd}(\Omega)]^M$ is such that $Du \in [L^1_{bdd}(\Omega)]^N$. In this setting, define a functional, denoted by $\operatorname{Sym}(D; \nu) \bullet u$, acting on each $\psi \in [\operatorname{Lip}_c(\partial\Omega)]^N$ according to

$$\langle (-i) \operatorname{Sym} (D; \nu) \bullet u, \psi \rangle := \int_{\Omega} \langle Du, \Psi \rangle \, d\mathcal{L}^n - \int_{\Omega} \langle u, D^{\top} \Psi \rangle \, d\mathcal{L}^n,$$

where $\Psi \in \left[\operatorname{Lip}(\overline{\Omega})\right]^N$ satisfies $\Psi|_{\partial\Omega} = \psi$, and $\Psi \equiv 0$ outside of some compact subset of $\overline{\Omega}$.

Then the functional $\operatorname{Sym}(D; \nu) \bullet u$ is meaningfully and unambiguously defined and, in fact, belongs to the space $\left[\left(\operatorname{Lip}_{c}(\partial\Omega)\right)'\right]^{M}$.

Theorem (B)

Let $\Omega \subseteq \mathbb{R}^n$ be an open set with an ADR boundary. Abbreviate $\sigma := \mathcal{H}^{n-1} \lfloor \partial \Omega$, and fix $\kappa > 0$.

Consider an arbitrary $N \times M$ homogeneous first-order system D with constant complex coefficients in \mathbb{R}^n , along with some \mathcal{L}^n -measurable function $u : \Omega \to \mathbb{C}^M$ with the property that

$$\mathbb{N}_{\kappa} u \in L^{p}(\partial\Omega, \sigma)$$
 for some $p \in \left(\frac{n-1}{n}, \infty\right)$.

Also, assume that $Du \in [L^1_{loc}(\Omega)]^N$ and $\mathfrak{P}(Du) \in L^p(\partial\Omega, \sigma)$. Then, in a quantitative sense,

$$\operatorname{Sym}(D;\nu) \bullet u \in \left[H^{p}(\partial\Omega,\sigma)\right]^{N}.$$

Moreover, this is compatible with the trace result with nontangential pointwise traces (formulated earlier for p = 1).

Integral Representation Formula

The theorem below is central to the present considerations.

Theorem (C)

Let $\Omega \subseteq \mathbb{R}^n$ be open, ADR boundary, and $\mathcal{H}^{n-1}(\partial \Omega \setminus \partial_* \Omega) = 0$. Denote by ν its GMT outward unit normal and abbreviate $\sigma := \mathcal{H}^{n-1} \lfloor \partial \Omega$. Let D be an injectively elliptic, homogeneous, first-order $N \times M$ system with constant complex coefficients in \mathbb{R}^n . Hence, $L := D^*D$ is an elliptic second-order $M \times M$ system in \mathbb{R}^n . In particular, L^{\top} has a decent fundamental solution $E_{L^{\top}}$. Then, with \overline{D} acting on the columns of $E_{L^{\top}}$, consider the fundamental solution for D^{\top} given by

$$\widetilde{E} := \overline{D}E_{L^{\top}}$$

Next, let $u: \Omega \to \mathbb{C}^M$ be a measurable function satisfying, for some $\kappa > 0$,

 $\mathbb{N}_{\kappa} u \in L^{p}(\partial\Omega, \sigma)$ for some $p \in \left(\frac{n-1}{n}, \infty\right)$.

Theorem (Continuation)

In addition, assume that

$$Du \in [L^1_{\text{loc}}(\Omega)]^N$$
 and $\mathfrak{P}(Du) \in L^p(\partial\Omega, \sigma)$.

Then Sym $(D; \nu) \bullet u$ belongs to the Hardy space $[H^p(\partial\Omega, \sigma)]^N$. Moreover, if $p \in (\frac{n-1}{n}, 1]$ then for \mathcal{L}^n -a.e. Lebesgue point $x \in \Omega$ for the function u with the property that

$$\int_{\Omega} \frac{|(Du)(y)|}{|x-y|^{n-1}} \, dy < +\infty$$

one has

$$u(x) = \left\langle \widetilde{E}^{\top}(x-\cdot) \big|_{\partial\Omega}, \, (-i) \mathrm{Sym}\left(D;\nu\right) \bullet u \right\rangle$$

$$-\int_{\Omega}\left\langle \widetilde{E}^{\, op}(x-y)\,,\,(Du)(y)
ight
angle \,dy$$

Theorem (Continuation)

The bracket $\langle \cdot, \cdot \rangle$ in the first line above is viewed as the duality pairing between the rows of the $M \times N$ matrix $\tilde{E}^{\top}(x-\cdot)|_{\partial\Omega}$, each of which belonging to

$$\left(\left[H^{p}(\partial\Omega,\sigma)\right]^{N}\right)^{*} = \begin{cases} \left[\mathscr{C}^{(n-1)\left(\frac{1}{p}-1\right)}(\partial\Omega)\right]^{N} & \text{if } p < 1, \\ \left[BMO(\partial\Omega,\sigma)\right]^{N} & \text{if } p = 1, \end{cases}$$

and (-i)Sym $(D; \nu) \bullet u \in [H^p(\partial\Omega, \sigma)]^N$.

A similar integral representation formula holds if $p \in (1, \infty)$, using ordinary integration over $\partial \Omega$ in place of the duality brackets above.

Jump Formulas: Weighted Lebesgue Spaces

Theorem (D)

Let $\Omega \subset \mathbb{R}^n$ be an open set with a UR boundary. Denote by ν its GMT outward unit normal and abbreviate $\sigma := \mathcal{H}^{n-1} \lfloor \partial \Omega$. Consider a function

$$k \in \mathscr{C}^{N}(\mathbb{R}^{n} \setminus \{0\})$$
 with $k(-x) = -k(x)$ and
 $k(\lambda x) = \lambda^{1-n}k(x)$ $\forall \lambda > 0$, $\forall x \in \mathbb{R}^{n} \setminus \{0\}$,

and for each $f \in L^1(\partial\Omega, \frac{\sigma(x)}{1+|x|^{n-1}})$ define the boundary to domain SIO

$$\Im f(x) := \int_{\partial\Omega} k(x-y)f(y) \, d\sigma(y), \qquad x \in \Omega,$$

along with its boundary to boundary version $Tf(x) := \lim_{\varepsilon \to 0^+} \int_{y \in \partial\Omega, |x-y| > \varepsilon} k(x-y)f(y) \, d\sigma(y), \quad x \in \partial\Omega.$

Theorem (Continuation)

Then for each $f \in L^1ig(\partial\Omega, rac{\sigma(x)}{1+|x|^{n-1}}ig)$ the jump-formula

$$\lim_{\Gamma_{\kappa}(x)\ni z\to x} \Im f(z) = \frac{1}{2\sqrt{-1}} \,\widehat{k}(\nu(x))f(x) + Tf(x)$$

holds at σ -a.e. $x \in \partial_* \Omega$ (with 'hat' denoting the Fourier transform in \mathbb{R}^n).

The next step is to extend this result as to allow f to be a distribution in a Hardy space on $\partial\Omega$. In such a scenario, we can no longer speak of pointwise values of f, so a new point of view is required.

On a given closed ADR set $\Sigma \subset \mathbb{R}^n$, it turns out that the identity map between the Hardy scale H^p and the Lebesgue scale L^p when $p \in (1, \infty)$ may be further extended uniquely to a linear and bounded mapping in the range $p \in \left(\frac{n-1}{n}, 1\right]$.

The Filtering Operator

Theorem (E)

Let $\Sigma \subseteq \mathbb{R}^n$ be a closed ADR set and abbreviate $\sigma := \mathcal{H}^{n-1} \lfloor \Sigma$. Also, consider an approximation to the identity $S_t : \Sigma \times \Sigma \to \mathbb{R}$ indexed by $t \in (0, \operatorname{diam} \Sigma)$ and satisfying, for all $x, y, z \in \Sigma$,

$$0 \le S_t(x, y) \le Ct^{1-n}, \quad S_t(x, y) = 0 \text{ if } |x - y| \ge Ct$$
$$|S_t(x, y) - S_t(z, y)| \le Ct^{-n}|x - z|,$$
$$S_t(x, y) = S_t(y, x), \text{ and } \int_{\Sigma} S_t(x, y) \, d\sigma(y) = 1.$$

Then for each $f \in H^p(\Sigma, \sigma)$ with $\frac{n-1}{n} , the limit$

$$\begin{split} (\mathfrak{H}f)(x) &:= \lim_{t \to 0^+} (H^p(\Sigma, \sigma))^* \big\langle S_t(x, \cdot), f \big\rangle_{H^p(\Sigma, \sigma)} \\ & \text{ exists for } \sigma\text{-a.e. point } x \in \Sigma. \end{split}$$

Theorem (Continuation)

Moreover, the assignment $f \mapsto \mathfrak{H} f$ induces a well-defined linear and bounded operator

and
$$\mathfrak{H}^p(\Sigma,\sigma) \to L^p(\Sigma,\sigma)$$
 for each $p \in \left(\frac{n-1}{n},\infty\right)$,

 $\mathfrak{H}f = f$ whenever $f \in H^p(\Sigma, \sigma) \cap L^1_{loc}(\Sigma, \sigma)$ with $p \in (\frac{n-1}{n}, \infty)$, hence in particular for each $f \in H^p(\Sigma, \sigma)$ with $1 \le p < \infty$.

Note: While \mathfrak{H} becomes the identification of $H^p(\Sigma, \sigma)$ with $L^p(\Sigma, \sigma)$ when $1 , the <math>L^p$ -filtering operator fails to be injective when $p \in \left(\frac{n-1}{n}, 1\right)$.

E.g., for each two distinct points $x_0, x_1 \in \Sigma$ we have $\delta_{x_0} - \delta_{x_1} \in H^p(\Sigma, \sigma)$ for every $p \in \left(\frac{n-1}{n}, 1\right)$ and (assuming $n \ge 2$) we have

$$\mathfrak{H}(\delta_{x_0} - \delta_{x_1}) = 0$$
 at σ -a.e. point on Σ .

Jump Formulas: Hardy Spaces

Theorem (F)

Let $\Omega \subseteq \mathbb{R}^n$ be open, with $\partial\Omega$ a UR set. Denote by ν its GMT outward unit normal and abbreviate $\sigma := \mathcal{H}^{n-1}\lfloor\partial\Omega$. Fix $k \in \mathscr{C}^N(\mathbb{R}^n \setminus \{0\})$ which is odd and positive homogeneous of degree 1 - n, and pick $p \in (\frac{n-1}{n}, 1]$. Then the principal-value SIO of formal convolution with the kernel k on $\partial\Omega$ induces a well-defined linear and bounded mapping

 $T: H^p(\partial\Omega, \sigma) \to L^p(\partial\Omega, \sigma).$

Also, if we fix $\kappa > 0$ and for each $f \in H^p(\partial\Omega, \sigma)$ we define

$$(\Im f)(x) := {}_{(H^p(\partial\Omega,\sigma))^*} ig\langle k(x-\cdot) ig|_{\partial\Omega}, \, f \, ig
angle_{H^p(\partial\Omega,\sigma)} \quad \textit{ for } \ x\in\Omega,$$

then for each $f \in H^p(\partial\Omega, \sigma)$ the following jump-formula holds:

$$(\Im f)\Big|_{\partial\Omega}^{\kappa-\mathrm{n.t.}}(x) = \frac{1}{2\sqrt{-1}}\,\widehat{k}\big(\nu(x)\big)(\mathfrak{H}f)(x) + (Tf)(x) \quad \textit{for σ-a.e.} \quad x \in \partial_*\Omega.$$

The end-game in the proof of Fatou Theorem

Recall that $\Omega \subset \mathbb{R}^n$ is a UR domain, D is injectively elliptic, and $u: \Omega \to \mathbb{C}^M$ satisfies

$$\mathbb{N}_{\kappa} u \in L^{p}(\partial\Omega, \sigma) \text{ with } p \in \left(\frac{n-1}{n}, \infty\right),$$

and $Du = 0$ in $[\mathcal{D}'(\Omega)]^{N}.$

Then Theorem B on p. 14 implies that

Sym
$$(D; \nu) \bullet u \in [H^p(\partial\Omega, \sigma)]^N$$
.

Granted this, the integral representation formula from Theorem C on p. 16, with $k := (-i)\widetilde{E}^{\top}$, gives

$$\begin{split} u(x) &= \left\langle \widetilde{E}^{\top}(x-\cdot)\big|_{\partial\Omega}, \, (-i) \mathrm{Sym}\left(D;\nu\right) \bullet u \right\rangle \\ &= \left(\Im \big(\mathrm{Sym}\left(D;\nu\right) \bullet u \big) \Big)(x) \ \text{ for each } x \in \Omega. \end{split}$$

Finally, the jump-formula from Theorem F on $p.\,22$ applies and ensures that

$$\begin{aligned} \left(u\Big|_{\partial\Omega}^{\kappa-\mathrm{n.t.}}\right)(x) &= \left(\Im\left(\mathrm{Sym}\left(D\,;\nu\right)\bullet u\right)\Big|_{\partial\Omega}^{\kappa-\mathrm{n.t.}}\right)(x) \\ &= \frac{1}{2\sqrt{-1}}\,\widehat{k}\big(\nu(x)\big)\Big(\mathfrak{H}\big(\mathrm{Sym}\left(D\,;\nu\right)\bullet u\big)\Big)(x) \\ &+ \Big(T\big(\mathrm{Sym}\left(D\,;\nu\right)\bullet u\big)\Big)(x) \end{aligned}$$

for σ -a.e. $x \in \partial_*\Omega$, hence for σ -a.e. $x \in \partial\Omega$ since we are presently assuming that $\mathcal{H}^{n-1}(\partial\Omega \setminus \partial_*\Omega) = 0$. QED