Poisson Integral Representation Formulas for weakly elliptic systems in domains with Ahlfors-David regular boundaries

Dorina Mitrea

University of Missouri, USA

joint work with Irina Mitrea and Marius Mitrea

ICMAT, Madrid, Spain May 28, 2018

Let
$$\Omega = B(0,1) \subset \mathbb{R}^n$$
. Then if $k(x,y) := \frac{1-|x|^2}{\omega_{n-1}|x-y|^n}$ for $x \neq y$,

$$\begin{array}{c} u \in C^{2}(\Omega) \\ \Delta u = 0 \quad \text{in} \quad \Omega \end{array} \right\} \implies u(x) = \int_{\partial \Omega} k(x,y) \big(u \big|_{\partial \Omega} \big)(y) \, d\sigma(y) \quad \forall x \in \Omega$$

k(x, y) is the Poisson kernel for the Laplacian for the unit ball. Comments:

• Regarding the nature of k, we have $k(x, y) = -\partial_{\nu(y)}[G(x, y)]$, where G is the Green function for the Laplacian in Ω ; i.e., for each $x \in \Omega$:

 $\left[\begin{array}{c} G(x,\cdot) \in C^{\infty}(\overline{\Omega} \setminus \{x\}) \cap L^{1}_{loc}(\Omega) \\ \Delta_{y}G(x,y) = -\delta_{x}(y), \quad G(x,\cdot) \Big|_{\partial\Omega} = 0 \end{array} \right]$

Let
$$\Omega = B(0,1) \subset \mathbb{R}^n$$
. Then if $k(x,y) := \frac{1-|x|^2}{\omega_{n-1}|x-y|^n}$ for $x \neq y$,

$$\frac{u \in C^{2}(\overline{\Omega})}{\Delta u = 0 \text{ in } \Omega} \right\} \implies u(x) = \int_{\partial \Omega} k(x, y) \big(u \big|_{\partial \Omega} \big)(y) \, d\sigma(y) \quad \forall x \in \Omega$$

k(x, y) is the Poisson kernel for the Laplacian for the unit ball. Comments:

• Regarding the nature of k, we have $k(x, y) = -\partial_{\nu(y)}[G(x, y)]$, where G is the Green function for the Laplacian in Ω ; i.e., for each $x \in \Omega$:

$$\left[\begin{array}{c} G(x,\cdot) \in C^{\infty}(\overline{\Omega} \setminus \{x\}) \cap L^{1}_{loc}(\Omega) \\ \Delta_{y}G(x,y) = -\delta_{x}(y), \quad G(x,\cdot) \Big|_{\partial\Omega} = 0 \end{array} \right]$$

Let
$$\Omega = B(0,1) \subset \mathbb{R}^n$$
. Then if $k(x,y) := \frac{1-|x|^2}{\omega_{n-1}|x-y|^n}$ for $x \neq y$,

$$\frac{u \in C^{2}(\overline{\Omega})}{\Delta u = 0 \text{ in } \Omega} \right\} \Longrightarrow u(x) = \int_{\partial \Omega} k(x, y) (u|_{\partial \Omega})(y) \, d\sigma(y) \quad \forall x \in \Omega$$

k(x, y) is the Poisson kernel for the Laplacian for the unit ball. Comments:

• Regarding the nature of k, we have $k(x, y) = -\partial_{\nu(y)}[G(x, y)]$, where G is the Green function for the Laplacian in Ω ; i.e., for each $x \in \Omega$:

$$\begin{cases} G(x,\cdot) \in C^{\infty}(\overline{\Omega} \setminus \{x\}) \cap L^{1}_{loc}(\Omega) \\ \Delta_{y}G(x,y) = -\delta_{x}(y), \quad G(x,\cdot)\big|_{\partial\Omega} = 0 \end{cases}$$

Let
$$\Omega = B(0,1) \subset \mathbb{R}^n$$
. Then if $k(x,y) := \frac{1-|x|^2}{\omega_{n-1}|x-y|^n}$ for $x \neq y$,

$$\frac{u \in C^{2}(\overline{\Omega})}{\Delta u = 0 \text{ in } \Omega} \right\} \implies u(x) = \int_{\partial \Omega} k(x, y) (u|_{\partial \Omega}) (y) \, d\sigma(y) \quad \forall x \in \Omega$$

k(x, y) is the Poisson kernel for the Laplacian for the unit ball. Comments:

• Regarding the nature of k, we have $k(x, y) = -\partial_{\nu(y)}[G(x, y)]$, where G is the Green function for the Laplacian in Ω ; i.e., for each $x \in \Omega$:

$$\begin{cases} G(x,\cdot) \in C^{\infty}(\overline{\Omega} \setminus \{x\}) \cap L^{1}_{loc}(\Omega) \\ \Delta_{y}G(x,y) = -\delta_{x}(y), \quad G(x,\cdot)\big|_{\partial\Omega} = 0 \end{cases}$$

• In the proof of the Poisson formula, use the classical Divergence Theorem in the bounded C^1 domain $\Omega_{\varepsilon} := \Omega \setminus \overline{B(x,\varepsilon)}, \varepsilon > 0$ small, where $x \in \Omega$ is an arbitrary fixed point, for the divergence-free vector field

$$ec{F} := u
abla G - G
abla u \in C^1(\overline{\Omega_{arepsilon}})$$

and then take the limit as $\varepsilon \to 0^+$. The assumption $u \in C^2(\overline{\Omega})$ is needed in the proof to ensure the regularity of \vec{F} , but seems like an overkill as far as the conclusion

$$u(x) = \int_{\partial\Omega} \partial_{\nu(y)} [G(x,y)] (u|_{\partial\Omega}) (y) \, d\sigma(y)$$

is concerned.

• In principle, the approach is robust and may be adapted to other more general partial differential operators than the Laplacian.

• In the proof of the Poisson formula, use the classical Divergence Theorem in the bounded C^1 domain $\Omega_{\varepsilon} := \Omega \setminus \overline{B(x,\varepsilon)}, \varepsilon > 0$ small, where $x \in \Omega$ is an arbitrary fixed point, for the divergence-free vector field

$$ec{F} := u
abla G - G
abla u \in C^1(\overline{\Omega_{arepsilon}})$$

and then take the limit as $\varepsilon \to 0^+$. The assumption $u \in C^2(\overline{\Omega})$ is needed in the proof to ensure the regularity of \vec{F} , but seems like an overkill as far as the conclusion

$$u(x) = \int_{\partial\Omega} \partial_{\nu(y)} [G(x,y)] (u|_{\partial\Omega}) (y) \, d\sigma(y)$$

is concerned.

• In principle, the approach is robust and may be adapted to other more general partial differential operators than the Laplacian.

$$u = -\int_{\partial\Omega} \partial_{\nu(y)} [G(\cdot, y)] (u|_{\partial\Omega})(y) \, d\sigma(y)$$

Specifically:

• the nature of Ω is best described in the language of geometric measure theory; from now on, $\sigma := \mathcal{H}^{n-1} \lfloor \partial \Omega$ and the outward unit normal ν is the De Giorgi-Federer normal for sets of locally finite perimeter (\mathcal{H}^{n-1} is the (n-1)-dim. Hausdorff measure in \mathbb{R}^n).

- boundary traces taken in the nontangential approach sense
- replace the Laplacian by general weakly elliptic homogeneous constant complex coefficient second-order systems
- \bullet impose minimal size and smoothness assumptions on the solution u and Green function G

$$u = -\int_{\partial\Omega} \partial_{\nu(y)} [G(\cdot, y)] (u|_{\partial\Omega}) (y) \, d\sigma(y)$$

Specifically:

• the nature of Ω is best described in the language of geometric measure theory; from now on, $\sigma := \mathcal{H}^{n-1} \lfloor \partial \Omega$ and the outward unit normal ν is the De Giorgi-Federer normal for sets of locally finite perimeter (\mathcal{H}^{n-1} is the (n-1)-dim. Hausdorff measure in \mathbb{R}^n).

• boundary traces taken in the nontangential approach sense

- replace the Laplacian by general weakly elliptic homogeneous constant complex coefficient second-order systems
- \bullet impose minimal size and smoothness assumptions on the solution u and Green function G

$$u = -\int_{\partial\Omega} \partial_{\nu(y)} [G(\cdot, y)] (u\big|_{\partial\Omega}) (y) \, d\sigma(y)$$

Specifically:

• the nature of Ω is best described in the language of geometric measure theory; from now on, $\sigma := \mathcal{H}^{n-1} \lfloor \partial \Omega$ and the outward unit normal ν is the De Giorgi-Federer normal for sets of locally finite perimeter (\mathcal{H}^{n-1} is the (n-1)-dim. Hausdorff measure in \mathbb{R}^n).

• boundary traces taken in the nontangential approach sense

• replace the Laplacian by general weakly elliptic homogeneous constant complex coefficient second-order systems

 \bullet impose minimal size and smoothness assumptions on the solution u and Green function G

$$u = -\int_{\partial\Omega} \partial_{\nu(y)} [G(\cdot, y)] (u|_{\partial\Omega})(y) \, d\sigma(y)$$

Specifically:

• the nature of Ω is best described in the language of geometric measure theory; from now on, $\sigma := \mathcal{H}^{n-1} \lfloor \partial \Omega$ and the outward unit normal ν is the De Giorgi-Federer normal for sets of locally finite perimeter (\mathcal{H}^{n-1} is the (n-1)-dim. Hausdorff measure in \mathbb{R}^n).

- boundary traces taken in the nontangential approach sense
- replace the Laplacian by general weakly elliptic homogeneous constant complex coefficient second-order systems

 \bullet impose minimal size and smoothness assumptions on the solution u and Green function G

$$u = -\int_{\partial\Omega} \partial_{\nu(y)} [G(\cdot, y)] (u|_{\partial\Omega})(y) \, d\sigma(y)$$

Specifically:

• the nature of Ω is best described in the language of geometric measure theory; from now on, $\sigma := \mathcal{H}^{n-1} \lfloor \partial \Omega$ and the outward unit normal ν is the De Giorgi-Federer normal for sets of locally finite perimeter (\mathcal{H}^{n-1} is the (n-1)-dim. Hausdorff measure in \mathbb{R}^n).

- boundary traces taken in the nontangential approach sense
- replace the Laplacian by general weakly elliptic homogeneous constant complex coefficient second-order systems
- \bullet impose minimal size and smoothness assumptions on the solution u and Green function G

• $\partial \Omega$ is lower Ahlfors-David regular, i.e., there exists $c \in (0, \infty)$ such that

 $cr^{n-1} \leq \mathcal{H}^{n-1}(B(x,r) \cap \Sigma)$ for each $x \in \Sigma$ and $r \in (0, 2 \operatorname{diam}(\Sigma))$.

• $\sigma = \mathcal{H}^{n-1}\lfloor \partial \Omega$ is a doubling measure on $\partial \Omega$, i.e., there exists some $C \geq 1$ such that $0 < \sigma(B(x, 2r) \cap \partial \Omega) \leq C\sigma(B(x, r) \cap \partial \Omega) < +\infty$ for all $x \in \partial \Omega$ and $r \in (0, \infty)$.

• $\partial \Omega$ is lower Ahlfors-David regular, i.e., there exists $c \in (0, \infty)$ such that

 $cr^{n-1} \leq \mathcal{H}^{n-1}(B(x,r) \cap \Sigma)$ for each $x \in \Sigma$ and $r \in (0, 2 \operatorname{diam}(\Sigma))$.

• $\sigma = \mathcal{H}^{n-1}\lfloor \partial \Omega$ is a doubling measure on $\partial \Omega$, i.e., there exists some $C \geq 1$ such that $0 < \sigma(B(x, 2r) \cap \partial \Omega) \leq C\sigma(B(x, r) \cap \partial \Omega) < +\infty$ for all $x \in \partial \Omega$ and $r \in (0, \infty)$.

• $\partial \Omega$ is lower Ahlfors-David regular, i.e., there exists $c \in (0, \infty)$ such that

 $cr^{n-1} \leq \mathcal{H}^{n-1}(B(x,r) \cap \Sigma)$ for each $x \in \Sigma$ and $r \in (0, 2 \operatorname{diam}(\Sigma))$.

• $\sigma = \mathcal{H}^{n-1}\lfloor \partial\Omega$ is a doubling measure on $\partial\Omega$, i.e., there exists some $C \geq 1$ such that $0 < \sigma(B(x, 2r) \cap \partial\Omega) \leq C\sigma(B(x, r) \cap \partial\Omega) < +\infty$ for all $x \in \partial\Omega$ and $r \in (0, \infty)$.

• $\partial \Omega$ is lower Ahlfors-David regular, i.e., there exists $c \in (0, \infty)$ such that

 $cr^{n-1} \leq \mathcal{H}^{n-1}(B(x,r) \cap \Sigma)$ for each $x \in \Sigma$ and $r \in (0, 2 \operatorname{diam}(\Sigma))$.

• $\sigma = \mathcal{H}^{n-1} \lfloor \partial \Omega$ is a doubling measure on $\partial \Omega$, i.e., there exists some $C \geq 1$ such that $0 < \sigma (B(x, 2r) \cap \partial \Omega) \leq C\sigma (B(x, r) \cap \partial \Omega) < +\infty$ for all $x \in \partial \Omega$ and $r \in (0, \infty)$.

The domain

Fact: If σ is locally finite then Ω is a set of locally finite perimeter. As such, the De Giorgi-Federer unit normal ν to Ω exists and is defined σ -a.e. on the geometric measure theoretic boundary $\partial_*\Omega$

$$\partial_*\Omega := \Big\{ x \in \mathbb{R}^n : \limsup_{r \to 0^+} \, \frac{\mathcal{L}^n(B(x,r) \cap \Omega)}{r^n} > 0 \text{ and} \\ \limsup_{r \to 0^+} \, \frac{\mathcal{L}^n(B(x,r) \setminus \Omega)}{r^n} > 0 \Big\},$$

where \mathcal{L}^n is the Lebesgue measure in \mathbb{R}^n . Fix $\kappa > 0$ playing the role of aperture parameter. For each $x \in \partial \Omega$ define the nontangential approach region

 $\Gamma_{\kappa}(x) := \left\{ y \in \Omega : |y - x| < (1 + \kappa) \operatorname{dist}(y, \partial \Omega) \right\}$

The domain

Fact: If σ is locally finite then Ω is a set of locally finite perimeter. As such, the De Giorgi-Federer unit normal ν to Ω exists and is defined σ -a.e. on the geometric measure theoretic boundary $\partial_*\Omega$

$$\partial_*\Omega := \Big\{ x \in \mathbb{R}^n : \limsup_{r \to 0^+} \, \frac{\mathcal{L}^n(B(x,r) \cap \Omega)}{r^n} > 0 \text{ and} \\ \limsup_{r \to 0^+} \, \frac{\mathcal{L}^n(B(x,r) \setminus \Omega)}{r^n} > 0 \Big\},$$

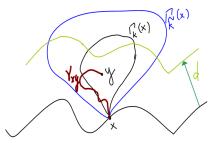
where \mathcal{L}^n is the Lebesgue measure in \mathbb{R}^n . Fix $\kappa > 0$ playing the role of aperture parameter. For each $x \in \partial \Omega$ define the nontangential approach region

$$\Gamma_{\kappa}(x) := \left\{ y \in \Omega : |y - x| < (1 + \kappa) \text{dist} (y, \partial \Omega) \right\}$$

The domain

• Ω is locally pathwise nontangentially accessible if Ω is open and:

given any $\kappa > 0$ there exist $\widetilde{\kappa} \ge \kappa$ along with $c \in [1, \infty)$ and d > 0 such that σ -a.e. point $x \in \partial \Omega$ has the property that any $y \in \Gamma_{\kappa}(x)$ with dist $(y, \partial \Omega) < d$ may be joined by a rectifiable curve $\gamma_{x,y}$ satisfying $\gamma_{x,y} \setminus \{x\} \subset \Gamma_{\widetilde{\kappa}}(x)$ and whose length is $\leq c|x-y|$.



The nontangential maximal operator with aperture κ acts on any measurable function $u: \Omega \to \mathbb{C}$ according to

 $(\mathcal{N}_{\kappa}u)(x) := \|u\|_{L^{\infty}(\Gamma_{\kappa}(x))}, \quad x \in \partial\Omega,$

and the nontangential boundary trace of u is defined as

$$(u\Big|_{\partial\Omega}^{\kappa-\mathrm{n.t.}})(x) := \lim_{\Gamma_{\kappa}(x)\ni y\to x} u(y),$$

whenever $x\in\partial\Omega$ is such that $x\in\overline{\Gamma_{\kappa}(x)}.$

For $\rho > 0$ define the truncated nontangential maximal operator

 $\left(\mathcal{N}^{\rho}_{\kappa}u\right)(x) := \|u\|_{L^{\infty}(\Gamma_{\kappa}(x)\cap\mathcal{O}_{\rho})}, \qquad x\in\partial\Omega,$

where $\mathcal{O}_{\rho} := \{ y \in \Omega : \operatorname{dist}(y, \partial \Omega) < \rho \}.$

The nontangential maximal operator with aperture κ acts on any measurable function $u: \Omega \to \mathbb{C}$ according to

 $(\mathcal{N}_{\kappa}u)(x) := \|u\|_{L^{\infty}(\Gamma_{\kappa}(x))}, \quad x \in \partial\Omega,$

and the nontangential boundary trace of u is defined as

$$(u\Big|_{\partial\Omega}^{\kappa-n.t.})(x) := \lim_{\Gamma_{\kappa}(x)\ni y\to x} u(y),$$

whenever $x\in\partial\Omega$ is such that $x\in\overline{\Gamma_{\kappa}(x)}.$

For $\rho > 0$ define the truncated nontangential maximal operator

 $(\mathcal{N}^{\rho}_{\kappa}u)(x) := \|u\|_{L^{\infty}(\Gamma_{\kappa}(x)\cap\mathcal{O}_{\rho})}, \qquad x\in\partial\Omega,$

where $\mathcal{O}_{\rho} := \{ y \in \Omega : \operatorname{dist}(y, \partial \Omega) < \rho \}.$

The operator

Fix $n, M \in \mathbb{N}$, with $n \geq 2$. We work with a homogeneous $M \times M$ second-order complex constant coefficient system in \mathbb{R}^n (with the summation convention over repeated indices)

 $L = \left(a_{rs}^{\alpha\beta}\partial_r\partial_s\right)_{1\leq\alpha,\beta\leq M}$

which is weakly elliptic, i.e., its $M \times M$ symbol matrix

 $L(\xi) := \left(a_{rs}^{\alpha\beta}\xi_r\xi_s\right)_{1 \le \alpha, \beta \le M}, \qquad \forall \, \xi = (\xi_r)_{1 \le r \le n} \in \mathbb{R}^n,$

satisfies

$$\det[L(\xi)] \neq 0, \qquad \forall \xi \in \mathbb{R}^n \setminus \{0\}.$$

Examples to keep in mind. Scalar operators: $L = a_{jk}\partial_j\partial_k$ with $a_{jk} \in \mathbb{C}$ (e.g., the Laplacian). Genuine systems: $L = \mu\Delta + (\lambda + \mu)\nabla div$ with $\mu, \lambda \in \mathbb{C}$ (Lamé-like).

The operator

Fix $n, M \in \mathbb{N}$, with $n \geq 2$. We work with a homogeneous $M \times M$ second-order complex constant coefficient system in \mathbb{R}^n (with the summation convention over repeated indices)

 $L = \left(a_{rs}^{\alpha\beta}\partial_r\partial_s\right)_{1\leq\alpha,\beta\leq M}$

which is weakly elliptic, i.e., its $M \times M$ symbol matrix

$$L(\xi) := \left(a_{rs}^{\alpha\beta}\xi_r\xi_s\right)_{1 \le \alpha, \beta \le M}, \qquad \forall \, \xi = (\xi_r)_{1 \le r \le n} \in \mathbb{R}^n,$$

satisfies

$$\det[L(\xi)] \neq 0, \qquad \forall \xi \in \mathbb{R}^n \setminus \{0\}.$$

Examples to keep in mind. Scalar operators: $L = a_{jk}\partial_j\partial_k$ with $a_{jk} \in \mathbb{C}$ (e.g., the Laplacian). Genuine systems: $L = \mu\Delta + (\lambda + \mu)\nabla \text{div}$ with $\mu, \lambda \in \mathbb{C}$ (Lamé-like). Consider the coefficient tensor

$$A = \left(a_{rs}^{\alpha\beta}\right)_{\substack{1 \le r,s \le n\\ 1 \le \alpha,\beta \le M}}$$

where $a_{rs}^{\alpha\beta} \in \mathbb{C}$. Its transposed is given by

$$A^{\top} := \left(a_{sr}^{\beta\alpha}\right)_{\substack{1 \le s, r \le n \\ 1 \le \beta, \alpha \le M}}.$$

With each such A we may canonically associate a homogeneous constant (complex) coefficient second-order $M \times M$ system L_A in \mathbb{R}^n which is expressed as

$$L_A := \left(a_{rs}^{\alpha\beta} \partial_r \partial_s \right)_{\substack{1 \le \alpha \le M \\ 1 \le \beta \le N.}}$$

In particular, $(L_A)^{\top} = L_{A^{\top}}$. **Note:** Given a homogeneous second-order system L, there exist *infinitely many* coefficient tensors A such that $L = L_A$.

D. Mitrea (MU)

Conormal derivative

Let Ω be a set of locally finite perimeter in \mathbb{R}^n . Denote by $\nu = (\nu_r)_{1 \leq r \leq n}$ the De Giorgi-Federer outward unit normal to Ω (defined σ -a.e. on $\partial_*\Omega$). Let $A = \left(a_{rs}^{\alpha\beta}\right)_{\substack{1 \leq r,s \leq n \\ 1 \leq \alpha,\beta \leq M}}$ be a coefficient tensor with complex entries. Also fix an aperture parameter $\kappa > 0$. If $u \in \left[W_{\text{loc}}^{1,1}(\Omega)\right]^M$ then the conormal derivative of u with respect to the coefficient tensor A and the set Ω is the \mathbb{C}^M -valued function

$$\partial_{\nu}^{A} u := \left(\nu_{r} a_{rs}^{\alpha\beta} (\partial_{s} u_{\beta}) \big|_{\partial \Omega}^{\kappa-\mathrm{n.t.}} \right)_{1 \le \alpha \le M} \quad \text{at σ-a.e. point on $\partial_{*}\Omega$},$$

whenever meaningful.

Note: Starting with a homogeneous second-order system L, for each writing $L = L_A$ there corresponds a typically distinct conormal derivative ∂_{ν}^A .

Conormal derivative

Let Ω be a set of locally finite perimeter in \mathbb{R}^n . Denote by $\nu = (\nu_r)_{1 \leq r \leq n}$ the De Giorgi-Federer outward unit normal to Ω (defined σ -a.e. on $\partial_*\Omega$). Let $A = \left(a_{rs}^{\alpha\beta}\right)_{\substack{1 \leq r,s \leq n \\ 1 \leq \alpha,\beta \leq M}}$ be a coefficient tensor with complex entries. Also fix an aperture parameter $\kappa > 0$. If $u \in \left[W_{\text{loc}}^{1,1}(\Omega)\right]^M$ then the conormal derivative of u with respect to the coefficient tensor A and the set Ω is the \mathbb{C}^M -valued function

$$\partial_{\nu}^{A} u := \left(\nu_{r} a_{rs}^{\alpha\beta} (\partial_{s} u_{\beta}) \big|_{\partial \Omega}^{\kappa-\mathrm{n.t.}} \right)_{1 \le \alpha \le M} \quad \text{at σ-a.e. point on $\partial_{*}\Omega$},$$

whenever meaningful.

Note: Starting with a homogeneous second-order system L, for each writing $L = L_A$ there corresponds a typically distinct conormal derivative ∂_{ν}^A .

Theorem (A Sharp Poisson formula [MMM2018])

Let $\Omega \subset \mathbb{R}^n$ be a bounded locally pathwise nontangentially accessible set with a lower Ahlfors-David regular boundary and such that $\sigma := \mathcal{H}^{n-1} | \partial \Omega$ is a doubling measure on $\partial \Omega$.

Suppose L is a weakly elliptic, homogenous, constant complex coefficient, second-order, $M \times M$ system in \mathbb{R}^n .

Fix an aperture parameter $\kappa > 0$, along with an arbitrary point $x_0 \in \Omega$, and choose a truncation $0 < \rho < \frac{1}{4} \operatorname{dist}(x_0, \partial \Omega)$.

Then there exists some $\tilde{\kappa} > 0$, which depends only on Ω and κ , with the following significance.

Theorem (Continuation)

Assume G is a matrix-valued function satisfying

$$\begin{cases} G \in \left[L^{1}_{\text{loc}}(\Omega)\right]^{M \times M}, \\ L^{\top}G = -\delta_{x_{0}}I_{M \times M} \text{ in } \mathcal{D}'(\Omega), \\ \left(\nabla G\right)\Big|_{\partial\Omega}^{\tilde{\kappa}-\text{n.t.}} \text{ exists at } \sigma\text{-a.e. point on } \partial\Omega, \\ G\Big|_{\partial\Omega}^{\tilde{\kappa}-\text{n.t.}} = 0 \text{ at } \sigma\text{-a.e. point on } \partial\Omega, \end{cases}$$

and assume u is a \mathbb{C}^M -valued function satisfying

$$\begin{cases} u \in \left[C^{\infty}(\Omega)\right]^{M}, \quad Lu = 0 \quad in \quad \Omega, \\ u\Big|_{\partial\Omega}^{\kappa-n.t.} \quad exists \ at \ \sigma-a.e. \ point \ on \quad \partial\Omega, \\ \int_{\partial\Omega} \mathcal{N}_{\kappa}^{\rho} u \cdot \mathcal{N}_{\widetilde{\kappa}}^{\rho}(\nabla G) \ d\sigma < +\infty. \end{cases}$$

D. Mitrea (MU)

Theorem (Continuation)

Then for any choice of a coefficient tensor A which permits writing L as L_A , one has the Poisson integral representation formula

$$u(x_0) = -\int_{\partial_*\Omega} \left\langle u \Big|_{\partial\Omega}^{\kappa-\mathrm{n.t.}}, \, \partial_
u^{A^{ op}} G \right\rangle d\sigma$$

where ν denotes the De Giorgi-Federer outward unit normal to Ω and $\partial_{\nu}^{A^{\top}}$ stands for the conormal derivative associated with A^{\top} acting on the columns of the matrix-valued function G.

• Ordinary Lebesgue spaces: $\mathcal{N}^{\rho}_{\kappa} u \in L^{p}(\partial\Omega, \sigma)$ and $\mathcal{N}^{\rho}_{\kappa}(\nabla G) \in L^{p'}(\partial\Omega, \sigma)$

• Muckenhoupt weighted Lebesgue spaces: $\mathcal{N}_{\kappa}^{\rho} u \in L^{p}(\partial\Omega, w \sigma)$ and $\mathcal{N}_{\kappa}^{\rho}(\nabla G) \in L^{p'}(\partial\Omega, w^{1-p'}\sigma)$, where $w \in A_{p}(\partial\Omega, \sigma)$

- Lorentz spaces: $\mathcal{N}_{\kappa}^{\rho} u \in L^{p,q}(\partial\Omega,\sigma)$ and $\mathcal{N}_{\kappa}^{\rho}(\nabla G) \in L^{p',q'}(\partial\Omega,\sigma)$
- Morrey spaces and their pre-duals....

• Ordinary Lebesgue spaces: $\mathcal{N}_{\kappa}^{\rho} u \in L^{p}(\partial\Omega, \sigma)$ and $\mathcal{N}_{\kappa}^{\rho}(\nabla G) \in L^{p'}(\partial\Omega, \sigma)$

• Muckenhoupt weighted Lebesgue spaces: $\mathcal{N}_{\kappa}^{\rho} u \in L^{p}(\partial\Omega, w \sigma)$ and $\mathcal{N}_{\kappa}^{\rho}(\nabla G) \in L^{p'}(\partial\Omega, w^{1-p'}\sigma)$, where $w \in A_{p}(\partial\Omega, \sigma)$

• Lorentz spaces: $\mathcal{N}_{\kappa}^{\rho} u \in L^{p,q}(\partial\Omega,\sigma)$ and $\mathcal{N}_{\kappa}^{\rho}(\nabla G) \in L^{p',q'}(\partial\Omega,\sigma)$

• Morrey spaces and their pre-duals....

• Ordinary Lebesgue spaces: $\mathcal{N}_{\kappa}^{\rho} u \in L^{p}(\partial\Omega, \sigma)$ and $\mathcal{N}_{\kappa}^{\rho}(\nabla G) \in L^{p'}(\partial\Omega, \sigma)$

• Muckenhoupt weighted Lebesgue spaces: $\mathcal{N}_{\kappa}^{\rho} u \in L^{p}(\partial\Omega, w\sigma)$ and $\mathcal{N}_{\kappa}^{\rho}(\nabla G) \in L^{p'}(\partial\Omega, w^{1-p'}\sigma)$, where $w \in A_{p}(\partial\Omega, \sigma)$

• Lorentz spaces: $\mathcal{N}_{\kappa}^{\rho} u \in L^{p,q}(\partial\Omega,\sigma)$ and $\mathcal{N}_{\kappa}^{\rho}(\nabla G) \in L^{p',q'}(\partial\Omega,\sigma)$

• Morrey spaces and their pre-duals....

• Ordinary Lebesgue spaces: $\mathcal{N}_{\kappa}^{\rho} u \in L^{p}(\partial\Omega, \sigma)$ and $\mathcal{N}_{\kappa}^{\rho}(\nabla G) \in L^{p'}(\partial\Omega, \sigma)$

• Muckenhoupt weighted Lebesgue spaces: $\mathcal{N}_{\kappa}^{\rho} u \in L^{p}(\partial\Omega, w\sigma)$ and $\mathcal{N}_{\kappa}^{\rho}(\nabla G) \in L^{p'}(\partial\Omega, w^{1-p'}\sigma)$, where $w \in A_{p}(\partial\Omega, \sigma)$

- Lorentz spaces: $\mathcal{N}_{\kappa}^{\rho} u \in L^{p,q}(\partial\Omega,\sigma)$ and $\mathcal{N}_{\kappa}^{\rho}(\nabla G) \in L^{p',q'}(\partial\Omega,\sigma)$
- Morrey spaces and their pre-duals....

• Ordinary Lebesgue spaces: $\mathcal{N}_{\kappa}^{\rho} u \in L^{p}(\partial\Omega, \sigma)$ and $\mathcal{N}_{\kappa}^{\rho}(\nabla G) \in L^{p'}(\partial\Omega, \sigma)$

• Muckenhoupt weighted Lebesgue spaces: $\mathcal{N}_{\kappa}^{\rho} u \in L^{p}(\partial\Omega, w\sigma)$ and $\mathcal{N}_{\kappa}^{\rho}(\nabla G) \in L^{p'}(\partial\Omega, w^{1-p'}\sigma)$, where $w \in A_{p}(\partial\Omega, \sigma)$

- Lorentz spaces: $\mathcal{N}_{\kappa}^{\rho} u \in L^{p,q}(\partial\Omega,\sigma)$ and $\mathcal{N}_{\kappa}^{\rho}(\nabla G) \in L^{p',q'}(\partial\Omega,\sigma)$
- Morrey spaces and their pre-duals....

• Ordinary Lebesgue spaces: $\mathcal{N}_{\kappa}^{\rho} u \in L^{p}(\partial\Omega, \sigma)$ and $\mathcal{N}_{\kappa}^{\rho}(\nabla G) \in L^{p'}(\partial\Omega, \sigma)$

• Muckenhoupt weighted Lebesgue spaces: $\mathcal{N}_{\kappa}^{\rho} u \in L^{p}(\partial\Omega, w\sigma)$ and $\mathcal{N}_{\kappa}^{\rho}(\nabla G) \in L^{p'}(\partial\Omega, w^{1-p'}\sigma)$, where $w \in A_{p}(\partial\Omega, \sigma)$

- Lorentz spaces: $\mathcal{N}_{\kappa}^{\rho} u \in L^{p,q}(\partial\Omega,\sigma)$ and $\mathcal{N}_{\kappa}^{\rho}(\nabla G) \in L^{p',q'}(\partial\Omega,\sigma)$
- Morrey spaces and their pre-duals....

Proof

Fix $\beta \in \{1, \dots, M\}$ and define the vector field $\vec{F} := \left(u_{\alpha} a_{kj}^{\gamma \alpha} \partial_k G_{\gamma \beta} - G_{\alpha \beta} a_{jk}^{\alpha \gamma} \partial_k u_{\gamma} \right)_{1 \le j \le n} \quad \text{a.e. in} \quad \Omega.$

The strategy to prove the desired integral representation formula is to apply to this vector field a suitable version of the Divergence Theorem, much more potent than the classical one. **A word of caution:** The classical Divergence Formula for bdd. C^1 domains and C^1 vector fields on the closure fails hopelessly short, and so does the De Giorgi-Federer version (involving sets of locally finite perimeters but requiring the vector field to be C^1 with compact support in the *entire* \mathbb{R}^n).

Step I. From $G \in [C^{\infty}(\Omega \setminus \{x_0\}) \cap W^{1,1}_{\text{loc}}(\Omega)]^{M \times M}$ and $u \in [C^{\infty}(\Omega)]^M$ it follows that

 $\vec{F} \in \left[L^1_{\mathrm{loc}}(\Omega)\right]^n.$

Proof

Fix $\beta \in \{1, \ldots, M\}$ and define the vector field

$$\vec{F} := \left(u_{\alpha} a_{kj}^{\gamma \, \alpha} \, \partial_k G_{\gamma \, \beta} - G_{\alpha \beta} \, a_{jk}^{\alpha \gamma} \, \partial_k u_{\gamma} \right)_{1 \le j \le n} \quad \text{a.e. in} \quad \Omega.$$

The strategy to prove the desired integral representation formula is to apply to this vector field a suitable version of the Divergence Theorem, much more potent than the classical one.

A word of caution: The classical Divergence Formula for bdd. C^1 domains and C^1 vector fields on the closure fails hopelessly short, and so does the De Giorgi-Federer version (involving sets of locally finite perimeters but requiring the vector field to be C^1 with compact support in the *entire* \mathbb{R}^n).

Step I. From $G \in \left[C^{\infty}(\Omega \setminus \{x_0\}) \cap W^{1,1}_{\text{loc}}(\Omega)\right]^{M \times M}$ and $u \in \left[C^{\infty}(\Omega)\right]^M$ it follows that

 $\vec{F} \in \left[L_{\mathrm{loc}}^1(\Omega)\right]^n.$

Proof

Fix $\beta \in \{1, \ldots, M\}$ and define the vector field

$$\vec{F} := \left(u_{\alpha} a_{kj}^{\gamma \, \alpha} \, \partial_k G_{\gamma \, \beta} - G_{\alpha \beta} \, a_{jk}^{\alpha \gamma} \, \partial_k u_{\gamma} \right)_{1 \le j \le n} \quad \text{a.e. in} \quad \Omega.$$

The strategy to prove the desired integral representation formula is to apply to this vector field a suitable version of the Divergence Theorem, much more potent than the classical one.

A word of caution: The classical Divergence Formula for bdd. C^1 domains and C^1 vector fields on the closure fails hopelessly short, and so does the De Giorgi-Federer version (involving sets of locally finite perimeters but requiring the vector field to be C^1 with compact support in the *entire* \mathbb{R}^n).

Step I. From $G \in [C^{\infty}(\Omega \setminus \{x_0\}) \cap W^{1,1}_{\text{loc}}(\Omega)]^{M \times M}$ and $u \in [C^{\infty}(\Omega)]^M$ it follows that

 $\vec{F} \in \left[L_{\mathrm{loc}}^1(\Omega)\right]^n.$

Proof

Fix $\beta \in \{1, \ldots, M\}$ and define the vector field

$$\vec{F} := \left(u_{\alpha} a_{kj}^{\gamma \, \alpha} \, \partial_k G_{\gamma \, \beta} - G_{\alpha \beta} \, a_{jk}^{\alpha \gamma} \, \partial_k u_{\gamma} \right)_{1 \le j \le n} \quad \text{a.e. in} \quad \Omega.$$

The strategy to prove the desired integral representation formula is to apply to this vector field a suitable version of the Divergence Theorem, much more potent than the classical one.

A word of caution: The classical Divergence Formula for bdd. C^1 domains and C^1 vector fields on the closure fails hopelessly short, and so does the De Giorgi-Federer version (involving sets of locally finite perimeters but requiring the vector field to be C^1 with compact support in the *entire* \mathbb{R}^n).

Step I. From $G \in [C^{\infty}(\Omega \setminus \{x_0\}) \cap W^{1,1}_{\text{loc}}(\Omega)]^{M \times M}$ and $u \in [C^{\infty}(\Omega)]^M$ it follows that

 $\vec{F} \in \left[L^1_{\text{loc}}(\Omega)\right]^n.$

Step II. Show that div $\vec{F} = -u_{\beta}(x_0) \,\delta_{x_0}$ in $\mathcal{D}'(\Omega)$.

In the sense of distributions in Ω , we have

div $\vec{F} = (\partial_j u_\alpha) a_{kj}^{\gamma \alpha} (\partial_k G_{\gamma \beta}) + u_\alpha a_{kj}^{\gamma \alpha} (\partial_j \partial_k G_{\gamma \beta})$ $- (\partial_j G_{\alpha\beta}) a_{jk}^{\alpha\gamma} (\partial_k u_\gamma) - G_{\alpha\beta} a_{jk}^{\alpha\gamma} (\partial_j \partial_k u_\gamma) =: I_1 + I_2 + I_3 + I_4.$

Changing variables $j' = k, k' = j, \alpha' = \gamma$, and $\gamma' = \alpha$ in I_3 yields

$$I_3 = -(\partial_{k'}G_{\gamma'\beta}) a_{k'j'}^{\gamma'\alpha'} (\partial_{j'}u_{\alpha'}) = -I_1$$

while, $I_4 = -G_{\alpha\beta} (L_A u)_{\alpha} = -G_{\alpha\beta} (L u)_{\alpha} = 0$. In addition,

 $I_2 = u_{\alpha} (L_{A^{\top}} G_{\star\beta})_{\alpha} = u_{\alpha} (L^{\top} G_{\star\beta})_{\alpha} = -u_{\alpha} \delta_{\alpha\beta} \delta_{x_0} = -u_{\beta}(x_0) \, \delta_{x_0}.$

$$\operatorname{div} \vec{F} = -u_{\beta}(x_0) \,\delta_{x_0} \in \mathcal{E}'(\Omega)$$

 $\operatorname{div} \vec{F} = (\partial_j u_\alpha) a_{kj}^{\gamma \alpha} (\partial_k G_{\gamma \beta}) + u_\alpha a_{kj}^{\gamma \alpha} (\partial_j \partial_k G_{\gamma \beta})$ $- (\partial_j G_{\alpha\beta}) a_{jk}^{\alpha\gamma} (\partial_k u_\gamma) - G_{\alpha\beta} a_{jk}^{\alpha\gamma} (\partial_j \partial_k u_\gamma) =: I_1 + I_2 + I_3 + I_4.$

Changing variables $j' = k, k' = j, \alpha' = \gamma$, and $\gamma' = \alpha$ in I_3 yields

$$I_3 = -(\partial_{k'}G_{\gamma'\beta}) a_{k'j'}^{\gamma'\alpha'} (\partial_{j'}u_{\alpha'}) = -I_1$$

while, $I_4 = -G_{\alpha\beta} (L_A u)_{\alpha} = -G_{\alpha\beta} (L u)_{\alpha} = 0$. In addition,

 $I_2 = u_\alpha (L_{A^{\top}} G_{{}_{\bullet}\beta})_\alpha = u_\alpha (L^{\top} G_{{}_{\bullet}\beta})_\alpha = -u_\alpha \delta_{\alpha\beta} \delta_{x_0} = -u_\beta(x_0) \, \delta_{x_0}.$

$$\operatorname{div} \bar{F} = -u_{\beta}(x_0) \, \delta_{x_0} \in \mathcal{E}'(\Omega)$$

 $\operatorname{div} \vec{F} = (\partial_j u_\alpha) a_{kj}^{\gamma \alpha} (\partial_k G_{\gamma \beta}) + u_\alpha a_{kj}^{\gamma \alpha} (\partial_j \partial_k G_{\gamma \beta})$ $- (\partial_j G_{\alpha\beta}) a_{jk}^{\alpha\gamma} (\partial_k u_\gamma) - G_{\alpha\beta} a_{jk}^{\alpha\gamma} (\partial_j \partial_k u_\gamma) =: I_1 + I_2 + I_3 + I_4.$

Changing variables j' = k, k' = j, $\alpha' = \gamma$, and $\gamma' = \alpha$ in I_3 yields

$$I_3 = -(\partial_{k'}G_{\gamma'\beta}) a_{k'j'}^{\gamma'\alpha'} (\partial_{j'}u_{\alpha'}) = -I_1$$

while, $I_4 = -G_{\alpha\beta} (L_A u)_{\alpha} = -G_{\alpha\beta} (L u)_{\alpha} = 0$. In addition,

 $I_2 = u_{\alpha} (L_{A^{\top}} G_{\boldsymbol{\cdot} \beta})_{\alpha} = u_{\alpha} (L^{\top} G_{\boldsymbol{\cdot} \beta})_{\alpha} = -u_{\alpha} \delta_{\alpha\beta} \delta_{x_0} = -u_{\beta}(x_0) \, \delta_{x_0}.$

$$\operatorname{div} \bar{F} = -u_{\beta}(x_0) \, \delta_{x_0} \in \mathcal{E}'(\Omega)$$

 $\operatorname{div} \vec{F} = (\partial_j u_\alpha) a_{kj}^{\gamma \alpha} (\partial_k G_{\gamma \beta}) + u_\alpha a_{kj}^{\gamma \alpha} (\partial_j \partial_k G_{\gamma \beta})$ $- (\partial_j G_{\alpha\beta}) a_{jk}^{\alpha\gamma} (\partial_k u_\gamma) - G_{\alpha\beta} a_{jk}^{\alpha\gamma} (\partial_j \partial_k u_\gamma) =: I_1 + I_2 + I_3 + I_4.$

Changing variables j' = k, k' = j, $\alpha' = \gamma$, and $\gamma' = \alpha$ in I_3 yields

$$I_3 = -(\partial_{k'}G_{\gamma'\beta}) a_{k'j'}^{\gamma'\alpha'} (\partial_{j'}u_{\alpha'}) = -I_1$$

while, $I_4 = -G_{\alpha\beta} (L_A u)_{\alpha} = -G_{\alpha\beta} (L u)_{\alpha} = 0$. In addition,

 $I_2 = u_\alpha (L_{A^{\top}} G_{\boldsymbol{\cdot}\beta})_\alpha = u_\alpha (L^{\top} G_{\boldsymbol{\cdot}\beta})_\alpha = -u_\alpha \delta_{\alpha\beta} \delta_{x_0} = -u_\beta (x_0) \, \delta_{x_0}.$

$$\operatorname{div} \vec{F} = -u_{\beta}(x_0) \,\delta_{x_0} \in \mathcal{E}'(\Omega)$$

 $\operatorname{div} \vec{F} = (\partial_j u_\alpha) a_{kj}^{\gamma \alpha} (\partial_k G_{\gamma \beta}) + u_\alpha a_{kj}^{\gamma \alpha} (\partial_j \partial_k G_{\gamma \beta})$ $- (\partial_j G_{\alpha\beta}) a_{jk}^{\alpha\gamma} (\partial_k u_\gamma) - G_{\alpha\beta} a_{jk}^{\alpha\gamma} (\partial_j \partial_k u_\gamma) =: I_1 + I_2 + I_3 + I_4.$

Changing variables j' = k, k' = j, $\alpha' = \gamma$, and $\gamma' = \alpha$ in I_3 yields

$$I_3 = -(\partial_{k'}G_{\gamma'\beta}) a_{k'j'}^{\gamma'\alpha'} (\partial_{j'}u_{\alpha'}) = -I_1$$

while, $I_4 = -G_{\alpha\beta} (L_A u)_{\alpha} = -G_{\alpha\beta} (L u)_{\alpha} = 0$. In addition,

 $I_2 = u_\alpha (L_{A^{\top}} G_{\boldsymbol{\cdot}\beta})_\alpha = u_\alpha (L^{\top} G_{\boldsymbol{\cdot}\beta})_\alpha = -u_\alpha \delta_{\alpha\beta} \delta_{x_0} = -u_\beta (x_0) \, \delta_{x_0}.$

div
$$\vec{F} = -u_{\beta}(x_0) \, \delta_{x_0} \in \mathcal{E}'(\Omega)$$

Step III. Show that $\vec{F}\Big|_{\partial\Omega}^{\kappa-n.t.}$ exists at σ -a.e. point on $\partial\Omega$. Recall that $\vec{F} = (F_j)_{1 \le j \le n}$ with

 $F_{j} = u_{\alpha} a_{kj}^{\gamma \alpha} \partial_{k} G_{\gamma \beta} - G_{\alpha \beta} a_{jk}^{\alpha \gamma} \partial_{k} u_{\gamma}, \quad j \in \{1, \dots, n\}$

and that, by assumption,

 $(\nabla G)\Big|_{\partial\Omega}^{\overline{\kappa}-\mathrm{n.t.}}$ and $u\Big|_{\partial\Omega}^{\kappa-\mathrm{n.t.}}$ exist at σ -a.e. point on $\partial\Omega$.

Since $\tilde{\kappa} \geq \kappa$, the first piece in F_j is OK. We are left with proving that

 $(G \nabla u) \Big|_{\partial \Omega}^{\kappa-\mathrm{n.t.}}$ exists at σ -a.e. point on $\partial \Omega$.

 $\partial_{\mathrm{nta}}\Omega := \{ x \in \partial\Omega : x \in \overline{\Gamma_{\kappa}(x)} \text{ for each } \kappa > 0 \}.$

Fact: Ω locally pathwise nontangentially accessible set and σ doubling measure on $\partial \Omega \Longrightarrow \mathcal{H}^{n-1}(\partial \Omega \setminus \partial_{\operatorname{nta}}\Omega) = 0$

Choose a suitable (dictated by geometry) $\widetilde{\kappa} > \kappa$ and set $N_1 := \left\{ x \in \partial\Omega : \mathcal{N}^{\rho}_{\widetilde{\kappa}}(\nabla G)(x) = +\infty \text{ or } \left(G \Big|_{\partial\Omega}^{\widetilde{\kappa}-n.t.} \right)(x) \neq 0 \right\},$ $N_2 := \left\{ x \in \partial_{\operatorname{nta}}\Omega : \left(u \Big|_{\partial\Omega}^{\kappa-n.t.} \right)(x) \text{ fails to exist} \right\},$ $N_3 := \left\{ x \in \partial\Omega \text{ excluded in the locally pathwise n.t.a. definition} \right\}$ Let $N := N_1 \cup N_2 \cup N_3.$

Then the current assumptions ultimately imply $\sigma(N) = 0$.

Now fix $x \in \partial_{\text{nta}} \Omega \setminus N$ and pick $y \in \Gamma_{\kappa}(x)$ with $\delta_{\partial\Omega}(y) := \text{dist}(y, \partial\Omega)$ sufficiently small. Let γ_{xy} be a rectifiable curve joining x and yguaranteed to exist by the locally pathwise nontangential accessibility of Ω .

 $\partial_{\mathrm{nta}}\Omega := \big\{ x \in \partial\Omega : \, x \in \overline{\Gamma_{\kappa}(x)} \, \text{ for each } \kappa > 0 \big\}.$

Fact: Ω locally pathwise nontangentially accessible set and σ doubling measure on $\partial \Omega \Longrightarrow \mathcal{H}^{n-1}(\partial \Omega \setminus \partial_{\operatorname{nta}}\Omega) = 0$

Choose a suitable (dictated by geometry) $\widetilde{\kappa} > \kappa$ and set $N_1 := \left\{ x \in \partial\Omega : \mathcal{N}^{\rho}_{\widetilde{\kappa}}(\nabla G)(x) = +\infty \text{ or } \left(G \Big|_{\partial\Omega}^{\widetilde{\kappa}-n.t.} \right)(x) \neq 0 \right\},$ $N_2 := \left\{ x \in \partial_{\text{nta}}\Omega : \left(u \Big|_{\partial\Omega}^{\kappa-n.t.} \right)(x) \text{ fails to exist} \right\},$ $N_3 := \left\{ x \in \partial\Omega \text{ excluded in the locally pathwise n.t.a. definition} \right\}$ Let $N := N_1 \cup N_2 \cup N_3.$

Then the current assumptions ultimately imply $\sigma(N) = 0$.

Now fix $x \in \partial_{\text{nta}} \Omega \setminus N$ and pick $y \in \Gamma_{\kappa}(x)$ with $\delta_{\partial\Omega}(y) := \text{dist}(y, \partial\Omega)$ sufficiently small. Let γ_{xy} be a rectifiable curve joining x and yguaranteed to exist by the locally pathwise nontangential accessibility of Ω .

 $\partial_{\mathrm{nta}}\Omega := \big\{ x \in \partial\Omega : \, x \in \overline{\Gamma_{\kappa}(x)} \, \text{ for each } \kappa > 0 \big\}.$

Fact: Ω locally pathwise nontangentially accessible set and σ doubling measure on $\partial \Omega \Longrightarrow \mathcal{H}^{n-1}(\partial \Omega \setminus \partial_{\operatorname{nta}}\Omega) = 0$

Choose a suitable (dictated by geometry) $\tilde{\kappa} > \kappa$ and set $N_1 := \left\{ x \in \partial\Omega : \mathcal{N}^{\rho}_{\tilde{\kappa}}(\nabla G)(x) = +\infty \text{ or } \left(G \Big|_{\partial\Omega}^{\tilde{\kappa}-n.t.} \right)(x) \neq 0 \right\},$ $N_2 := \left\{ x \in \partial_{\mathrm{nta}}\Omega : \left(u \Big|_{\partial\Omega}^{\kappa-n.t.} \right)(x) \text{ fails to exist} \right\},$ $N_3 := \left\{ x \in \partial\Omega \text{ excluded in the locally pathwise n.t.a. definition} \right\}.$ Let $N := N_1 \cup N_2 \cup N_3.$

Then the current assumptions ultimately imply $\sigma(N) = 0$.

Now fix $x \in \partial_{\text{nta}} \Omega \setminus N$ and pick $y \in \Gamma_{\kappa}(x)$ with $\delta_{\partial\Omega}(y) := \text{dist}(y, \partial\Omega)$ sufficiently small. Let γ_{xy} be a rectifiable curve joining x and yguaranteed to exist by the locally pathwise nontangential accessibility of Ω .

 $\partial_{\mathrm{nta}}\Omega := \left\{ x \in \partial\Omega : x \in \overline{\Gamma_{\kappa}(x)} \text{ for each } \kappa > 0 \right\}.$

Fact: Ω locally pathwise nontangentially accessible set and σ doubling measure on $\partial \Omega \Longrightarrow \mathcal{H}^{n-1}(\partial \Omega \setminus \partial_{\operatorname{nta}}\Omega) = 0$

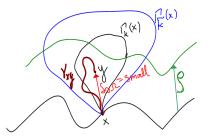
Choose a suitable (dictated by geometry) $\tilde{\kappa} > \kappa$ and set $N_1 := \left\{ x \in \partial\Omega : \mathcal{N}^{\rho}_{\tilde{\kappa}}(\nabla G)(x) = +\infty \text{ or } \left(G \Big|_{\partial\Omega}^{\tilde{\kappa}-\mathrm{n.t.}} \right)(x) \neq 0 \right\},$ $N_2 := \left\{ x \in \partial_{\mathrm{nta}}\Omega : \left(u \Big|_{\partial\Omega}^{\kappa-\mathrm{n.t.}} \right)(x) \text{ fails to exist} \right\},$ $N_3 := \left\{ x \in \partial\Omega \text{ excluded in the locally pathwise n.t.a. definition} \right\}.$ Let $N := N_1 \cup N_2 \cup N_3.$

Then the current assumptions ultimately imply $\sigma(N) = 0$.

Now fix $x \in \partial_{\text{nta}} \Omega \setminus N$ and pick $y \in \Gamma_{\kappa}(x)$ with $\delta_{\partial\Omega}(y) := \text{dist}(y, \partial\Omega)$ sufficiently small. Let γ_{xy} be a rectifiable curve joining x and yguaranteed to exist by the locally pathwise nontangential accessibility of Ω .

Since, by design, $(G|_{\partial\Omega}^{\tilde{\kappa}-n.t.})(x) = 0$, using the Fundamental Theorem of Calculus, we may estimate

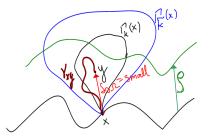
$$G(y) = G(\gamma_{xy}(t))\Big|_{t=0}^{t=1} = \int_0^1 \frac{d}{dt} \Big[G(\gamma_{xy}(t))\Big] dt$$
$$= \int_0^1 (\nabla G) \big(\gamma_{xy}(t)\big) \cdot \frac{d}{dt} \big[\gamma_{xy}(t)\big] dt$$



The choice of $\tilde{\kappa}$ implies $\gamma_{xy}((0,1]) \subset \Gamma_{\tilde{\kappa}}(x)$ and the smallness of $\delta_{\partial\Omega}(y)$ is tailored to ensure dist $(\gamma_{xy}, \partial\Omega) < \rho$.

Since, by design, $(G|_{\partial\Omega}^{\bar{\kappa}-n.t.})(x) = 0$, using the Fundamental Theorem of Calculus, we may estimate

$$G(y) = G(\gamma_{xy}(t))\Big|_{t=0}^{t=1} = \int_0^1 \frac{d}{dt} \Big[G(\gamma_{xy}(t))\Big] dt$$
$$= \int_0^1 (\nabla G) \big(\gamma_{xy}(t)\big) \cdot \frac{d}{dt} \big[\gamma_{xy}(t)\big] dt$$



The choice of $\tilde{\kappa}$ implies $\gamma_{xy}((0,1]) \subset \Gamma_{\tilde{\kappa}}(x)$ and the smallness of $\delta_{\partial\Omega}(y)$ is tailored to ensure dist $(\gamma_{xy}, \partial\Omega) < \rho$.

Recall $\gamma_{xy}((0,1]) \subset \Gamma_{\tilde{\kappa}}(x)$ and dist $(\gamma_{xy}, \partial\Omega) < \rho$. In addition, $\operatorname{length}(\gamma_{xy}([0,1])) \leq c|x-y| \leq c(1+\kappa)\operatorname{dist}(y,\partial\Omega) = C\delta_{\partial\Omega}(y).$

As we have just seen, the Fundamental Theorem of Calculus gives

$$G(y) = \int_0^1 (\nabla G) \left(\gamma_{xy}(t) \right) \cdot \frac{d}{dt} \left[\gamma_{xy}(t) \right] dt$$

so we may further estimate

 $\begin{aligned} |G(y)| &\leq \mathcal{N}^{\rho}_{\widetilde{\kappa}}(\nabla G)(x) \cdot \operatorname{length}(\gamma_{xy}([0,1])) \\ &\leq \mathcal{N}^{\rho}_{\widetilde{\kappa}}(\nabla G)(x) \cdot C \cdot \underbrace{\delta_{\partial\Omega}(y)}_{\text{rate of vanishing}} \end{aligned}$

Using interior estimates in $B(y, a \cdot \delta_{\partial\Omega}(y))$ with a > 0 small for $w(z) := u(z) - (u \Big|_{\partial\Omega}^{\kappa-n.t.})(x), z \in \Omega$, which is a null-solution for L, $|(\nabla u)(y)| = |(\nabla w)(y)| \le \frac{C}{\delta_{\partial\Omega}(y)} \int_{B(y,a \cdot \delta_{\partial\Omega}(y))} |u(z) - (u \Big|_{\partial\Omega}^{\kappa-n.t.})(x)| dz$

$$\leq C \cdot \underbrace{\delta_{\partial\Omega}(y)^{-1}}_{\text{blow up rate }} \cdot \sup_{\substack{z \in \Gamma_{\kappa_o}(x) \\ |x-z| < (1+c)\delta_{\partial\Omega}(y)}} \left| u(z) - \left(u \Big|_{\partial\Omega}^{\kappa-n, \iota} \right)(x) \right|$$

for some $\kappa_o > 0$ big. Unfortunately $\kappa_o > \kappa$, so we loose control!

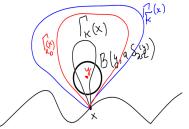
Remedy:

start with $y \in \Gamma_{\kappa'}(x)$ for suitable $\kappa' < \kappa$ to end up with $z \in \Gamma_{\kappa}(x)$.

Using interior estimates in $B(y, a \cdot \delta_{\partial\Omega}(y))$ with a > 0 small for $w(z) := u(z) - (u \Big|_{\partial\Omega}^{\kappa-n.t.})(x), z \in \Omega$, which is a null-solution for L, $|(\nabla u)(y)| = |(\nabla w)(y)| \le \frac{C}{\delta_{\partial\Omega}(y)} \oint_{B(y,a \cdot \delta_{\partial\Omega}(y))} |u(z) - (u \Big|_{\partial\Omega}^{\kappa-n.t.})(x)| dz$

$$\leq C \cdot \underbrace{\delta_{\partial\Omega}(y)^{-1}}_{\text{blow up rate }} \cdot \sup_{\substack{z \in \Gamma_{\kappa_o}(x) \\ |x-z| < (1+c)\delta_{\partial\Omega}(y)}} \left| u(z) - \left(u \Big|_{\partial\Omega}^{\kappa-n, \iota} \right)(x) \right|$$

for some $\kappa_o > 0$ big. Unfortunately $\kappa_o > \kappa$, so we loose control!



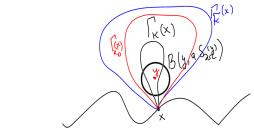
Remedy:

start with $y \in \Gamma_{\kappa'}(x)$ for suitable $\kappa' < \kappa$ to end up with $z \in \Gamma_{\kappa}(x)$.

Using interior estimates in $B(y, a \cdot \delta_{\partial\Omega}(y))$ with a > 0 small for $w(z) := u(z) - (u \Big|_{\partial\Omega}^{\kappa-n.t.})(x), z \in \Omega$, which is a null-solution for L, $|(\nabla u)(y)| = |(\nabla w)(y)| \le \frac{C}{\delta_{\partial\Omega}(y)} \int_{B(y,a \cdot \delta_{\partial\Omega}(y))} |u(z) - (u \Big|_{\partial\Omega}^{\kappa-n.t.})(x)| dz$

$$\leq C \cdot \underbrace{\delta_{\partial\Omega}(y)^{-1}}_{\text{blow up rate } |x-z| < (1+c)\delta_{\partial\Omega}(y)} \left| u(z) - \left(u \Big|_{\partial\Omega}^{\kappa-n,\alpha} \right)(x) \right|$$

for some $\kappa_o > 0$ big. Unfortunately $\kappa_o > \kappa$, so we loose control!



Remedy:

start with $y \in \Gamma_{\kappa'}(x)$ for suitable $\kappa' < \kappa$ to end up with $z \in \Gamma_{\kappa}(x)$.

Hence matters can be arranged so that

$$\begin{split} |(\nabla u)(y)| &\leq C \cdot \underbrace{\delta_{\partial\Omega}(y)^{-1}}_{\text{blow up rate } |x-z| < (1+c)\delta_{\partial\Omega}(y)} \left| u(z) - \left(u\Big|_{\partial\Omega}^{\kappa-n.t.}\right)(x) \right|. \end{split}$$
When combined with the earlier estimate on *G*, namely
$$|G(y)| &\leq C \cdot \underbrace{\delta_{\partial\Omega}(y)}_{\text{vanishing rate}} \cdot \mathcal{N}_{\overline{\kappa}}^{\rho}(\nabla G)(x), \end{aligned}$$
this yields
$$|G(y)||(\nabla u)(y)| &\leq C \mathcal{N}_{\overline{\kappa}}^{\rho}(\nabla G)(x) \cdot \sup_{\substack{z \in \Gamma_{\kappa}(x) \\ |x-z| < (1+c)\delta_{\partial\Omega}(y)}} \left| u(z) - \left(u\Big|_{\partial\Omega}^{\kappa-n.t.}\right)(x) \right|$$

Consequently,

 $\lim_{\Gamma_{\kappa}(x)\ni y\to x} |G(y)||(\nabla u)(y)| = 0 \text{ for each } x\in \partial_{\mathrm{nta}}\Omega\setminus N.$

Hence matters can be arranged so that

$$|(\nabla u)(y)| \le C \cdot \underbrace{\delta_{\partial\Omega}(y)^{-1}}_{\text{blow up rate } |x-z| < (1+c)\delta_{\partial\Omega}(y)} \left| u(z) - \left(u \Big|_{\partial\Omega}^{\kappa-n.t.} \right)(x) \right|.$$

When combined with the earlier estimate on G, namely

$$|G(y)| \le C \cdot \underbrace{\delta_{\partial\Omega}(y)}_{\text{vanishing rate}} \cdot \mathcal{N}^{\rho}_{\widetilde{\kappa}}(\nabla G)(x),$$

this yields

$$|G(y)||(\nabla u)(y)| \le C\mathcal{N}^{\rho}_{\widetilde{\kappa}}(\nabla G)(x) \cdot \sup_{\substack{z \in \Gamma_{\kappa}(x) \\ |x-z| < (1+c)\delta_{\partial\Omega}(y)}} \left| u(z) - \left(u\Big|_{\partial\Omega}^{\kappa-n.t.}\right)(x) \right|$$

qualitative vanishing rate

Consequently,

$$\lim_{\Gamma_{\kappa}(x)\ni y\to x} |G(y)||(\nabla u)(y)|=0 \ \text{ for each } \ x\in \partial_{\mathrm{nta}}\Omega\setminus N.$$

Hence $\vec{F}\Big|_{\partial\Omega}^{\kappa-n.t.}$ exists at all points in $\partial_{nta}\Omega \setminus N$. Since $\sigma(\partial\Omega \setminus (\partial_{nta}\Omega \setminus N)) = 0$, this nontangential trace exists at σ -a.e. point on $\partial\Omega$ and, in fact

$$\vec{F}\Big|_{\partial\Omega}^{\kappa-\mathrm{n.t.}} = \left(\left(u_{\alpha} \Big|_{\partial\Omega}^{\kappa-\mathrm{n.t.}} \right) a_{kj}^{\gamma\,\alpha} \left(\partial_k G_{\gamma\,\beta} \right) \Big|_{\partial\Omega}^{\widetilde{\kappa}-\mathrm{n.t.}} \right)_{1 \le j \le n}$$

Step IV. Show that there exists some $\varepsilon_0 > 0$ such that

 $\mathcal{N}^{\varepsilon_0}_{\kappa}\vec{F} \in L^1(\partial\Omega,\sigma).$

$$\begin{aligned} |(\nabla u)(y)| &\leq \frac{C}{\delta_{\partial\Omega}(y)} \oint_{B(y,a\cdot\delta_{\partial\Omega}(y))} |u(z)| \, dz \\ &\leq C\delta_{\partial\Omega}(y)^{-1} \cdot \sup_{\substack{z \in \Gamma_{\kappa}(x) \\ |x-z| < (1+c)\delta_{\partial\Omega}(y)}} |u(z)| \leq C \, \delta_{\partial\Omega}(y)^{-1} \cdot \left(\mathcal{N}_{\kappa}^{\rho} u\right)(x). \end{aligned}$$

- Recall the earlier estimate $|G(y)| \leq C \,\delta_{\partial\Omega}(y) \cdot \mathcal{N}^{\rho}_{\tilde{\kappa}}(\nabla G)(x).$
- Hence $\mathcal{N}_{\kappa}^{\varepsilon_{0}}(|G||\nabla u|) \leq C\mathcal{N}_{\widetilde{\kappa}}^{\rho}(\nabla G) \cdot \mathcal{N}_{\kappa}^{\rho}u$ at σ -a.e. point on $\partial\Omega$.

• Also, $\mathcal{N}_{\kappa}^{\varepsilon_{0}}(|\nabla G||u|) \leq \mathcal{N}_{\kappa}^{\varepsilon_{0}}(\nabla G) \cdot \mathcal{N}_{\kappa}^{\varepsilon_{0}}u \leq \mathcal{N}_{\kappa}^{\rho}(\nabla G) \cdot \mathcal{N}_{\kappa}^{\rho}u$ at each point on $\partial\Omega$.

Since by assumption $\mathcal{N}^{\rho}_{\kappa} u \cdot \mathcal{N}^{\rho}_{\kappa}(\nabla G) \in L^{1}(\partial\Omega, \sigma)$, it follows that $\mathcal{N}^{\varepsilon_{0}}_{\kappa}\vec{F} \in L^{1}(\partial\Omega, \sigma)$.

$$\begin{aligned} |(\nabla u)(y)| &\leq \frac{C}{\delta_{\partial\Omega}(y)} \oint_{B(y,a\cdot\delta_{\partial\Omega}(y))} |u(z)| \, dz \\ &\leq C\delta_{\partial\Omega}(y)^{-1} \cdot \sup_{\substack{z \in \Gamma_{\kappa}(x) \\ |x-z| < (1+c)\delta_{\partial\Omega}(y)}} |u(z)| \leq C \, \delta_{\partial\Omega}(y)^{-1} \cdot \left(\mathcal{N}_{\kappa}^{\rho} u\right)(x). \end{aligned}$$

- Recall the earlier estimate $|G(y)| \leq C \,\delta_{\partial\Omega}(y) \cdot \mathcal{N}^{\rho}_{\widetilde{\kappa}}(\nabla G)(x).$
- Hence $\mathcal{N}_{\kappa}^{\varepsilon_{0}}(|G||\nabla u|) \leq C\mathcal{N}_{\widetilde{\kappa}}^{\rho}(\nabla G) \cdot \mathcal{N}_{\kappa}^{\rho}u$ at σ -a.e. point on $\partial\Omega$.

• Also, $\mathcal{N}_{\kappa}^{\varepsilon_{0}}(|\nabla G||u|) \leq \mathcal{N}_{\kappa}^{\varepsilon_{0}}(\nabla G) \cdot \mathcal{N}_{\kappa}^{\varepsilon_{0}}u \leq \mathcal{N}_{\kappa}^{\rho}(\nabla G) \cdot \mathcal{N}_{\kappa}^{\rho}u$ at each point on $\partial\Omega$.

Since by assumption $\mathcal{N}^{\rho}_{\kappa} u \cdot \mathcal{N}^{\rho}_{\kappa}(\nabla G) \in L^{1}(\partial\Omega, \sigma)$, it follows that $\mathcal{N}^{\varepsilon_{0}}_{\kappa}\vec{F} \in L^{1}(\partial\Omega, \sigma)$.

$$\begin{aligned} |(\nabla u)(y)| &\leq \frac{C}{\delta_{\partial\Omega}(y)} \oint_{B(y,a\cdot\delta_{\partial\Omega}(y))} |u(z)| \, dz \\ &\leq C\delta_{\partial\Omega}(y)^{-1} \cdot \sup_{\substack{z \in \Gamma_{\kappa}(x) \\ |x-z| < (1+c)\delta_{\partial\Omega}(y)}} |u(z)| \leq C \, \delta_{\partial\Omega}(y)^{-1} \cdot \left(\mathcal{N}_{\kappa}^{\rho} u\right)(x). \end{aligned}$$

- Recall the earlier estimate $|G(y)| \leq C \,\delta_{\partial\Omega}(y) \cdot \mathcal{N}^{\rho}_{\tilde{\kappa}}(\nabla G)(x).$
- Hence $\mathcal{N}_{\kappa}^{\varepsilon_{0}}(|G||\nabla u|) \leq C\mathcal{N}_{\widetilde{\kappa}}^{\rho}(\nabla G) \cdot \mathcal{N}_{\kappa}^{\rho}u$ at σ -a.e. point on $\partial\Omega$.

• Also, $\mathcal{N}_{\kappa}^{\varepsilon_{0}}(|\nabla G||u|) \leq \mathcal{N}_{\kappa}^{\varepsilon_{0}}(\nabla G) \cdot \mathcal{N}_{\kappa}^{\varepsilon_{0}}u \leq \mathcal{N}_{\kappa}^{\rho}(\nabla G) \cdot \mathcal{N}_{\kappa}^{\rho}u$ at each point on $\partial\Omega$.

Since by assumption $\mathcal{N}^{\rho}_{\kappa} u \cdot \mathcal{N}^{\rho}_{\kappa}(\nabla G) \in L^{1}(\partial\Omega, \sigma)$, it follows that $\mathcal{N}^{\varepsilon_{0}}_{\kappa}\vec{F} \in L^{1}(\partial\Omega, \sigma)$.

$$\begin{aligned} |(\nabla u)(y)| &\leq \frac{C}{\delta_{\partial\Omega}(y)} \oint_{B(y,a\cdot\delta_{\partial\Omega}(y))} |u(z)| \, dz \\ &\leq C\delta_{\partial\Omega}(y)^{-1} \cdot \sup_{\substack{z \in \Gamma_{\kappa}(x) \\ |x-z| < (1+c)\delta_{\partial\Omega}(y)}} |u(z)| \leq C \, \delta_{\partial\Omega}(y)^{-1} \cdot \left(\mathcal{N}_{\kappa}^{\rho} u\right)(x). \end{aligned}$$

- Recall the earlier estimate $|G(y)| \leq C \,\delta_{\partial\Omega}(y) \cdot \mathcal{N}^{\rho}_{\tilde{\kappa}}(\nabla G)(x).$
- Hence $\mathcal{N}_{\kappa}^{\varepsilon_{0}}(|G||\nabla u|) \leq C\mathcal{N}_{\widetilde{\kappa}}^{\rho}(\nabla G) \cdot \mathcal{N}_{\kappa}^{\rho}u$ at σ -a.e. point on $\partial\Omega$.
- Also, $\mathcal{N}_{\kappa}^{\varepsilon_0}(|\nabla G||u|) \leq \mathcal{N}_{\kappa}^{\varepsilon_0}(\nabla G) \cdot \mathcal{N}_{\kappa}^{\varepsilon_0}u \leq \mathcal{N}_{\kappa}^{\rho}(\nabla G) \cdot \mathcal{N}_{\kappa}^{\rho}u$ at each point on $\partial\Omega$.

Since by assumption $\mathcal{N}^{\rho}_{\kappa} u \cdot \mathcal{N}^{\rho}_{\kappa} (\nabla G) \in L^{1}(\partial\Omega, \sigma)$, it follows that $\mathcal{N}^{\varepsilon_{0}}_{\kappa} \vec{F} \in L^{1}(\partial\Omega, \sigma)$.

$$\begin{aligned} |(\nabla u)(y)| &\leq \frac{C}{\delta_{\partial\Omega}(y)} \oint_{B(y,a\cdot\delta_{\partial\Omega}(y))} |u(z)| \, dz \\ &\leq C\delta_{\partial\Omega}(y)^{-1} \cdot \sup_{\substack{z \in \Gamma_{\kappa}(x) \\ |x-z| < (1+c)\delta_{\partial\Omega}(y)}} |u(z)| \leq C \, \delta_{\partial\Omega}(y)^{-1} \cdot \left(\mathcal{N}_{\kappa}^{\rho} u\right)(x). \end{aligned}$$

- Recall the earlier estimate $|G(y)| \leq C \,\delta_{\partial\Omega}(y) \cdot \mathcal{N}^{\rho}_{\widetilde{\kappa}}(\nabla G)(x).$
- Hence $\mathcal{N}_{\kappa}^{\varepsilon_{0}}(|G||\nabla u|) \leq C\mathcal{N}_{\widetilde{\kappa}}^{\rho}(\nabla G) \cdot \mathcal{N}_{\kappa}^{\rho}u$ at σ -a.e. point on $\partial\Omega$.
- Also, $\mathcal{N}_{\kappa}^{\varepsilon_{0}}(|\nabla G||u|) \leq \mathcal{N}_{\kappa}^{\varepsilon_{0}}(\nabla G) \cdot \mathcal{N}_{\kappa}^{\varepsilon_{0}}u \leq \mathcal{N}_{\widetilde{\kappa}}^{\rho}(\nabla G) \cdot \mathcal{N}_{\kappa}^{\rho}u$ at each point on $\partial\Omega$.

Since by assumption $\mathcal{N}_{\kappa}^{\rho} u \cdot \mathcal{N}_{\widetilde{\kappa}}^{\rho}(\nabla G) \in L^{1}(\partial\Omega, \sigma)$, it follows that $\mathcal{N}_{\kappa}^{\varepsilon_{0}} \vec{F} \in L^{1}(\partial\Omega, \sigma)$.

In summary, for the current choice of \vec{F} we have proved

$$\vec{F} \in \left[L_{\text{loc}}^{1}(\Omega)\right]^{n}, \quad \text{div} \ \vec{F} = -u_{\beta}(x_{0}) \ \delta_{x_{0}} \in \mathcal{E}'(\Omega),$$

$$\mathcal{N}_{\kappa}^{\varepsilon_{0}} \vec{F} \in L^{1}(\partial\Omega, \sigma) \quad \text{for some } \varepsilon_{0} > 0,$$

$$\vec{F}\Big|_{\partial\Omega}^{\kappa-\text{n.t.}} \quad \text{exists at } \sigma\text{-a.e. point on } \partial\Omega \text{ and}$$

$$\vec{F}\Big|_{\partial\Omega}^{\kappa-\text{n.t.}} = \left(\left(u_{\alpha}\Big|_{\partial\Omega}^{\kappa-\text{n.t.}}\right)a_{kj}^{\gamma\alpha}(\partial_{k}G_{\gamma\beta})\Big|_{\partial\Omega}^{\tilde{\kappa}-\text{n.t.}}\right)_{1 \leq j \leq n}.$$
ep V. Apply the Divergence Theorem (to be stated next):
$$-u_{\beta}(x_{0}) = (C_{b}^{\infty}(\Omega))^{*} \left(\text{div} \ \vec{F}, 1\right)_{C_{b}^{\infty}(\Omega)} = \int_{\partial_{*}\Omega} \nu \cdot \left(\vec{F}\Big|_{\partial\Omega}^{\kappa-\text{n.t.}}\right) d\sigma$$

$$= \int_{\partial_{*}\Omega} \left(u_{\alpha}\Big|_{\partial\Omega}^{\kappa-\text{n.t.}}\right) \nu_{j} a_{kj}^{\gamma\alpha} \left(\partial_{k}G_{\gamma\beta}\right)\Big|_{\partial\Omega}^{\tilde{\kappa}-\text{n.t.}} d\sigma$$

$$= \int_{\partial_{*}\Omega} \left\langle u\Big|_{\partial\Omega}^{\kappa-\text{n.t.}}, \partial_{\nu}^{A^{\top}}G_{*\beta} \right\rangle d\sigma,$$

 $\nu = (\nu_j)_j$ being the De Giorgi-Federer outward unit normal to Ω .

In summary, for the current choice of \vec{F} we have proved

$$\vec{F} \in \left[L_{\text{loc}}^{1}(\Omega)\right]^{n}, \quad \text{div} \ \vec{F} = -u_{\beta}(x_{0}) \ \delta_{x_{0}} \in \mathcal{E}'(\Omega),$$
$$\mathcal{N}_{\kappa}^{\varepsilon_{0}} \vec{F} \in L^{1}(\partial\Omega, \sigma) \quad \text{for some } \varepsilon_{0} > 0,$$
$$\vec{F}\Big|_{\partial\Omega}^{\kappa-\text{n.t.}} \quad \text{exists at } \sigma\text{-a.e. point on } \partial\Omega \text{ and}$$
$$\vec{F}\Big|_{\partial\Omega}^{\kappa-\text{n.t.}} = \left(\left(u_{\alpha}\Big|_{\partial\Omega}^{\kappa-\text{n.t.}}\right)a_{kj}^{\gamma\,\alpha}(\partial_{k}G_{\gamma\,\beta})\Big|_{\partial\Omega}^{\tilde{\kappa}-\text{n.t.}}\right)_{1 \leq j \leq n}.$$

Step V. Apply the Divergence Theorem (to be stated next):

$$-u_{\beta}(x_0) = {}_{\left(C_b^{\infty}(\Omega)\right)^*} \left(\operatorname{div} \vec{F}, 1\right)_{C_b^{\infty}(\Omega)} = \int_{\partial_*\Omega} \nu \cdot \left(\vec{F} \left|_{\partial\Omega}^{\kappa-\mathrm{n.t.}}\right) d\sigma$$

$$= \int_{\partial_*\Omega} \left(u_\alpha \Big|_{\partial\Omega}^{\kappa-\mathrm{n.t.}} \right) \nu_j a_{kj}^{\gamma\,\alpha} \left(\partial_k G_{\gamma\,\beta} \right) \Big|_{\partial\Omega}^{\bar{\kappa}-\mathrm{n.t.}} d\sigma$$
$$= \int_{\partial_*\Omega} \left\langle u \Big|_{\partial\Omega}^{\kappa-\mathrm{n.t.}} , \partial_\nu^{A^{\mathsf{T}}} G_{\boldsymbol{\cdot}\beta} \right\rangle d\sigma,$$

 $\nu = (\nu_j)_j$ being the De Giorgi-Federer outward unit normal to Ω . D. Mitrea (MU)

A sequence $\{f_j\}_{j\in\mathbb{N}} \subset C_b^{\infty}(\Omega)$ converges to $f \in C_b^{\infty}(\Omega)$ provided $\sup_{j\in\mathbb{N}} \sup_{x\in\Omega} |f_j(x)| < +\infty$ $\forall \text{ compact } K \subset \Omega \ \exists j_K \in \mathbb{N} \text{ such that } f_j \equiv f \text{ on } K \text{ if } j \geq j_K.$

Let $(C_b^{\infty}(\Omega))^*$ denote the algebraic dual of this linear space, so that $\lim_{j \to \infty} (C_b^{\infty}(\Omega))^* (\Lambda, f_j)_{C_b^{\infty}(\Omega)} = (C_b^{\infty}(\Omega))^* (\Lambda, f)_{C_b^{\infty}(\Omega)}$ whenever $\Lambda \in (C_b^{\infty}(\Omega))^*$ and $\lim_{j \to \infty} f_j = f$ in $C_b^{\infty}(\Omega)$

• If $u \in \mathcal{D}'(\Omega)$ and exist $\Lambda_u \in (C_b^{\infty}(\Omega))^*$ then this extension is unique.

• $\mathcal{E}'(\Omega) + L^1(\Omega) \subseteq (C_b^{\infty}(\Omega))^*$ If $u = w + g, w \in \mathcal{E}'(\Omega), g \in L^1(\Omega),$ then $\Lambda_u \in (C_b^{\infty}(\Omega))^*$ where

A sequence $\{f_j\}_{j\in\mathbb{N}} \subset C_b^{\infty}(\Omega)$ converges to $f \in C_b^{\infty}(\Omega)$ provided $\sup_{j\in\mathbb{N}} \sup_{x\in\Omega} |f_j(x)| < +\infty$ $\forall \text{ compact } K \subset \Omega \ \exists j_K \in \mathbb{N} \text{ such that } f_j \equiv f \text{ on } K \text{ if } j \geq j_K.$

Let $(C_b^{\infty}(\Omega))^*$ denote the algebraic dual of this linear space, so that $\lim_{j \to \infty} (C_b^{\infty}(\Omega))^* (\Lambda, f_j)_{C_b^{\infty}(\Omega)} = (C_b^{\infty}(\Omega))^* (\Lambda, f)_{C_b^{\infty}(\Omega)}$ whenever $\Lambda \in (C_b^{\infty}(\Omega))^*$ and $\lim_{j \to \infty} f_j = f$ in $C_b^{\infty}(\Omega)$

• If $u \in \mathcal{D}'(\Omega)$ and exist $\Lambda_u \in (C_b^{\infty}(\Omega))^*$ then this extension is unique.

• $\mathcal{E}'(\Omega) + L^1(\Omega) \subseteq (C_b^{\infty}(\Omega))^*$ If u = w + g, $w \in \mathcal{E}'(\Omega)$, $g \in L^1(\Omega)$, then $\Lambda_u \in (C_b^{\infty}(\Omega))^*$ where

A sequence $\{f_j\}_{j\in\mathbb{N}} \subset C_b^{\infty}(\Omega)$ converges to $f \in C_b^{\infty}(\Omega)$ provided $\sup_{j\in\mathbb{N}} \sup_{x\in\Omega} |f_j(x)| < +\infty$ $\forall \text{ compact } K \subset \Omega \ \exists j_K \in \mathbb{N} \text{ such that } f_j \equiv f \text{ on } K \text{ if } j \geq j_K.$

Let $(C_b^{\infty}(\Omega))^*$ denote the algebraic dual of this linear space, so that $\lim_{j \to \infty} (C_b^{\infty}(\Omega))^* (\Lambda, f_j)_{C_b^{\infty}(\Omega)} = (C_b^{\infty}(\Omega))^* (\Lambda, f)_{C_b^{\infty}(\Omega)}$ whenever $\Lambda \in (C_b^{\infty}(\Omega))^*$ and $\lim_{j \to \infty} f_j = f$ in $C_b^{\infty}(\Omega)$

• If $u \in \mathcal{D}'(\Omega)$ and exist $\Lambda_u \in (C_b^{\infty}(\Omega))^*$ then this extension is unique.

• $\mathcal{E}'(\Omega) + L^1(\Omega) \subseteq (C_b^{\infty}(\Omega))^*$ If u = w + g, $w \in \mathcal{E}'(\Omega)$, $g \in L^1(\Omega)$, then $\Lambda_u \in (C_b^{\infty}(\Omega))^*$ where

A sequence $\{f_j\}_{j \in \mathbb{N}} \subset C_b^{\infty}(\Omega)$ converges to $f \in C_b^{\infty}(\Omega)$ provided $\sup_{j \in \mathbb{N}} \sup_{x \in \Omega} |f_j(x)| < +\infty$ $\forall \text{ compact } K \subset \Omega \ \exists j_K \in \mathbb{N} \text{ such that } f_j \equiv f \text{ on } K \text{ if } j \geq j_K.$

Let $(C_b^{\infty}(\Omega))^*$ denote the algebraic dual of this linear space, so that $\lim_{j \to \infty} (C_b^{\infty}(\Omega))^* (\Lambda, f_j)_{C_b^{\infty}(\Omega)} = (C_b^{\infty}(\Omega))^* (\Lambda, f)_{C_b^{\infty}(\Omega)}$ whenever $\Lambda \in (C_b^{\infty}(\Omega))^*$ and $\lim_{j \to \infty} f_j = f$ in $C_b^{\infty}(\Omega)$

• If $u \in \mathcal{D}'(\Omega)$ and exist $\Lambda_u \in (C_b^{\infty}(\Omega))^*$ then this extension is unique.

• $\mathcal{E}'(\Omega) + L^1(\Omega) \subseteq (C_b^{\infty}(\Omega))^*$ If u = w + g, $w \in \mathcal{E}'(\Omega)$, $g \in L^1(\Omega)$, then $\Lambda_u \in (C_b^{\infty}(\Omega))^*$ where

A sequence $\{f_j\}_{j\in\mathbb{N}} \subset C_b^{\infty}(\Omega)$ converges to $f \in C_b^{\infty}(\Omega)$ provided $\sup_{j\in\mathbb{N}} \sup_{x\in\Omega} |f_j(x)| < +\infty$ $\forall \text{ compact } K \subset \Omega \ \exists j_K \in \mathbb{N} \text{ such that } f_j \equiv f \text{ on } K \text{ if } j \geq j_K.$

Let $(C_b^{\infty}(\Omega))^*$ denote the algebraic dual of this linear space, so that $\lim_{j \to \infty} (C_b^{\infty}(\Omega))^* (\Lambda, f_j)_{C_b^{\infty}(\Omega)} = (C_b^{\infty}(\Omega))^* (\Lambda, f)_{C_b^{\infty}(\Omega)}$ whenever $\Lambda \in (C_b^{\infty}(\Omega))^*$ and $\lim_{j \to \infty} f_j = f$ in $C_b^{\infty}(\Omega)$

• If $u \in \mathcal{D}'(\Omega)$ and exist $\Lambda_u \in (C_b^{\infty}(\Omega))^*$ then this extension is unique.

• $\mathcal{E}'(\Omega) + L^1(\Omega) \subseteq (C_b^{\infty}(\Omega))^*$ If u = w + g, $w \in \mathcal{E}'(\Omega)$, $g \in L^1(\Omega)$, then $\Lambda_u \in (C_b^{\infty}(\Omega))^*$ where

A sequence $\{f_j\}_{j\in\mathbb{N}} \subset C_b^{\infty}(\Omega)$ converges to $f \in C_b^{\infty}(\Omega)$ provided $\sup_{j\in\mathbb{N}} \sup_{x\in\Omega} |f_j(x)| < +\infty$ $\forall \text{ compact } K \subset \Omega \ \exists j_K \in \mathbb{N} \text{ such that } f_j \equiv f \text{ on } K \text{ if } j \geq j_K.$

Let $(C_b^{\infty}(\Omega))^*$ denote the algebraic dual of this linear space, so that $\lim_{j \to \infty} (C_b^{\infty}(\Omega))^* (\Lambda, f_j)_{C_b^{\infty}(\Omega)} = (C_b^{\infty}(\Omega))^* (\Lambda, f)_{C_b^{\infty}(\Omega)}$ whenever $\Lambda \in (C_b^{\infty}(\Omega))^*$ and $\lim_{j \to \infty} f_j = f$ in $C_b^{\infty}(\Omega)$

• If $u \in \mathcal{D}'(\Omega)$ and exist $\Lambda_u \in (C_b^{\infty}(\Omega))^*$ then this extension is unique.

• $\mathcal{E}'(\Omega) + L^1(\Omega) \subseteq (C_b^{\infty}(\Omega))^*$ If u = w + g, $w \in \mathcal{E}'(\Omega)$, $g \in L^1(\Omega)$, then $\Lambda_u \in (C_b^{\infty}(\Omega))^*$ where

Theorem (Divergence Theorem [MMM 2018])

Let $\Omega \subset \mathbb{R}^n$ be bounded, open, with a lower Ahlfors-David regular boundary, such that $\sigma := \mathcal{H}^{n-1} \lfloor \partial \Omega$ is a doubling measure on $\partial \Omega$. Let ν be the De Giorgi-Federer outward unit normal to Ω . Fix $\kappa > 0$ and assume

 $\vec{F} \in \left[\mathcal{E}'(\Omega) + L^1_{\mathrm{loc}}(\Omega)\right]^n \subset \left[\mathcal{D}'(\Omega)\right]^n$

is a vector field satisfying (for some $0 < \varepsilon < \text{dist}(\text{regsupp}\,\vec{F}\,,\,\partial\Omega))$

 $\mathcal{N}_{\kappa}^{\varepsilon}\vec{F} \in L^{1}(\partial\Omega,\sigma), \quad \vec{F}\big|_{\partial\Omega}^{\kappa-\mathrm{n.t.}} \text{ exists } \sigma\text{-a.e. on } \partial_{\mathrm{nta}}\Omega, \text{ and}$ div $\vec{F} \in \mathcal{D}'(\Omega)$ extends to a continuous functional in $(C_{b}^{\infty}(\Omega))^{*}$.

Then for any $\kappa' > 0$ the trace $\vec{F}\Big|_{\partial\Omega}^{\kappa'-n.t.}$ exists σ -a.e. on $\partial_{nta}\Omega$ and agrees with $\vec{F}\Big|_{\partial\Omega}^{\kappa-n.t.}$ and, with the dependence on aperture dropped,

$$(C_b^{\infty}(\Omega))^* (\operatorname{div} \vec{F}, 1)_{C_b^{\infty}(\Omega)} = \int_{\partial_*\Omega} \nu \cdot (\vec{F} \mid_{\partial\Omega}^{\operatorname{n.t.}}) d\sigma.$$

Then $\partial\Omega = S^{n-1} \cup \{(x',0) : |x'| < 1\}, \ \partial_*\Omega = S^{n-1}, \ \partial_{\mathrm{nta}}\Omega = \partial\Omega \setminus \{(x',0) : |x'| = 1\} \Rightarrow \partial_{\mathrm{nta}}\Omega \setminus \partial_*\Omega = \{(x',0) : |x'| < 1\}$ Also let $\vec{F} := \begin{cases} +\mathbf{e}_n & \text{in } \Omega \cap \mathbb{R}^n_+, \\ -\mathbf{e}_n & \text{in } \Omega \cap \mathbb{R}^n_- \end{cases}$

Then $\partial \Omega = S^{n-1} \cup \{(x', 0) : |x'| < 1\}, \ \partial_* \Omega = S^{n-1},$

 $-\mathbf{e}_n$ in $\Omega \cap \mathbb{R}^n_-$.

Then $\partial \Omega = S^{n-1} \cup \{(x', 0) : |x'| < 1\}, \ \partial_* \Omega = S^{n-1},$

 $\partial_{\mathrm{nta}}\Omega = \partial\Omega \setminus \{(x',0) : |x'| = 1\} \Rightarrow \partial_{\mathrm{nta}}\Omega \setminus \partial_*\Omega = \{(x',0) : |x'| < 1\}$ Also let $\exists \quad (+\mathbf{e}_n \quad \mathrm{in} \ \Omega \cap \mathbb{R}^n_+,$

 $\left\{ \begin{array}{cc} -\mathbf{e}_n & ext{in} \ \ \Omega\cap\mathbb{R}^n_-. \end{array}
ight.$

Then $\partial\Omega = S^{n-1} \cup \{(x',0) : |x'| < 1\}, \ \partial_*\Omega = S^{n-1},$ $\partial_{\mathrm{nta}}\Omega = \partial\Omega \setminus \{(x',0) : |x'| = 1\} \Rightarrow \partial_{\mathrm{nta}}\Omega \setminus \partial_*\Omega = \{(x',0) : |x'| < 1\}$ Also let $\vec{F} := \begin{cases} +\mathbf{e}_n & \mathrm{in } \ \Omega \cap \mathbb{R}^n_+, \\ -\mathbf{e}_n & \mathrm{in } \ \Omega \cap \mathbb{R}^n_- \end{cases}$

Then $\partial\Omega = S^{n-1} \cup \{(x',0) : |x'| < 1\}, \ \partial_*\Omega = S^{n-1}, \ \partial_{\mathrm{nta}}\Omega = \partial\Omega \setminus \{(x',0) : |x'| = 1\} \Rightarrow \partial_{\mathrm{nta}}\Omega \setminus \partial_*\Omega = \{(x',0) : |x'| < 1\}$ Also let $\vec{F} := \begin{cases} +\mathbf{e}_n & \text{in } \Omega \cap \mathbb{R}^n_+, \\ -\mathbf{e}_n & \text{in } \Omega \cap \mathbb{R}^n_+, \end{cases}$

Then $\partial\Omega = S^{n-1} \cup \{(x',0) : |x'| < 1\}, \ \partial_*\Omega = S^{n-1},$ $\partial_{\mathrm{nta}}\Omega = \partial\Omega \setminus \{(x',0) : |x'| = 1\} \Rightarrow \partial_{\mathrm{nta}}\Omega \setminus \partial_*\Omega = \{(x',0) : |x'| < 1\}$ Also let $\vec{F} := \begin{cases} +\mathbf{e}_n & \text{in } \Omega \cap \mathbb{R}^n_+, \\ -\mathbf{e}_n & \text{in } \Omega \cap \mathbb{R}^n_-. \end{cases}$

Then $\partial\Omega = S^{n-1} \cup \{(x',0) : |x'| < 1\}, \ \partial_*\Omega = S^{n-1},$ $\partial_{\mathrm{nta}}\Omega = \partial\Omega \setminus \{(x',0) : |x'| = 1\} \Rightarrow \partial_{\mathrm{nta}}\Omega \setminus \partial_*\Omega = \{(x',0) : |x'| < 1\}$ Also let $\vec{F} := \begin{cases} +\mathbf{e}_n & \text{in } \Omega \cap \mathbb{R}^n_+, \\ -\mathbf{e}_n & \text{in } \Omega \cap \mathbb{R}^n_-. \end{cases}$

Then $\partial\Omega = S^{n-1} \cup \{(x',0) : |x'| < 1\}, \ \partial_*\Omega = S^{n-1},$ $\partial_{\mathrm{nta}}\Omega = \partial\Omega \setminus \{(x',0) : |x'| = 1\} \Rightarrow \partial_{\mathrm{nta}}\Omega \setminus \partial_*\Omega = \{(x',0) : |x'| < 1\}$ Also let $\vec{F} := \begin{cases} +\mathbf{e}_n & \text{in } \Omega \cap \mathbb{R}^n_+, \\ -\mathbf{e}_n & \text{in } \Omega \cap \mathbb{R}^n_-. \end{cases}$

Then $\partial\Omega = S^{n-1} \cup \{(x',0) : |x'| < 1\}, \ \partial_*\Omega = S^{n-1},$ $\partial_{\mathrm{nta}}\Omega = \partial\Omega \setminus \{(x',0) : |x'| = 1\} \Rightarrow \partial_{\mathrm{nta}}\Omega \setminus \partial_*\Omega = \{(x',0) : |x'| < 1\}$ Also let $\vec{F} := \begin{cases} +\mathbf{e}_n & \text{in } \Omega \cap \mathbb{R}^n_+, \\ -\mathbf{e}_n & \text{in } \Omega \cap \mathbb{R}^n_-. \end{cases}$

Then $\partial\Omega = S^{n-1} \cup \{(x',0) : |x'| < 1\}, \ \partial_*\Omega = S^{n-1},$ $\partial_{\mathrm{nta}}\Omega = \partial\Omega \setminus \{(x',0) : |x'| = 1\} \Rightarrow \partial_{\mathrm{nta}}\Omega \setminus \partial_*\Omega = \{(x',0) : |x'| < 1\}$ Also let $\vec{F} := \begin{cases} +\mathbf{e}_n & \text{in } \Omega \cap \mathbb{R}^n_+, \\ -\mathbf{e}_n & \text{in } \Omega \cap \mathbb{R}^n_-. \end{cases}$

Hence, on the one hand we have

$$\int_{\partial_*\Omega} \nu \cdot \left(\vec{F}\Big|_{\partial\Omega}^{\kappa-n.t.}\right) d\sigma = \int_{S^{n-1}_+} \nu \cdot \mathbf{e}_n \, d\mathcal{H}^{n-1} - \int_{S^{n-1}_-} \nu \cdot \mathbf{e}_n \, d\mathcal{H}^{n-1}$$
$$= 2 \int_{|x'|<1} \mathbf{e}_n \cdot \mathbf{e}_n \, d\mathcal{H}^{n-1} = 2\mathcal{H}^{n-1} \big(\{|x'|<1\}\big) \neq 0,$$

while on the other hand, $\int_{\Omega} \operatorname{div} \vec{F} \, d\mathcal{L}^n = 0.$

Conclusion: The demand that $\vec{F}\Big|_{\partial\Omega}^{\kappa-n,t}$ exists σ -a.e. on $\partial_{nta}\Omega$ and not just on the (potentially smaller) set $\partial_*\Omega$ is **necessary**, even though it is $\partial_*\Omega$ which appears in the very formulation of the Divergence Formula.

Hence, on the one hand we have

$$\int_{\partial_*\Omega} \nu \cdot \left(\vec{F}\Big|_{\partial\Omega}^{\kappa-n.t.}\right) d\sigma = \int_{S^{n-1}_+} \nu \cdot \mathbf{e}_n \, d\mathcal{H}^{n-1} - \int_{S^{n-1}_-} \nu \cdot \mathbf{e}_n \, d\mathcal{H}^{n-1}$$
$$= 2 \int_{|x'|<1} \mathbf{e}_n \cdot \mathbf{e}_n \, d\mathcal{H}^{n-1} = 2\mathcal{H}^{n-1}\big(\{|x'|<1\}\big) \neq 0,$$

while on the other hand,
$$\int_{\Omega} \operatorname{div} \vec{F} \, d\mathcal{L}^n = 0.$$

Conclusion: The demand that $\vec{F}\Big|_{\partial\Omega}^{\kappa-n,t}$ exists σ -a.e. on $\partial_{nta}\Omega$ and not just on the (potentially smaller) set $\partial_*\Omega$ is **necessary**, even though it is $\partial_*\Omega$ which appears in the very formulation of the Divergence Formula.

Hence, on the one hand we have

$$\int_{\partial_*\Omega} \nu \cdot \left(\vec{F}\Big|_{\partial\Omega}^{\kappa-n.t.}\right) d\sigma = \int_{S^{n-1}_+} \nu \cdot \mathbf{e}_n \, d\mathcal{H}^{n-1} - \int_{S^{n-1}_-} \nu \cdot \mathbf{e}_n \, d\mathcal{H}^{n-1}$$
$$= 2 \int_{|x'|<1} \mathbf{e}_n \cdot \mathbf{e}_n \, d\mathcal{H}^{n-1} = 2\mathcal{H}^{n-1}\big(\{|x'|<1\}\big) \neq 0,$$

while on the other hand, $\int_{\Omega} \operatorname{div} \vec{F} d\mathcal{L}^n = 0.$

Conclusion: The demand that $\vec{F}\Big|_{\partial\Omega}^{\kappa-n.t.}$ exists σ -a.e. on $\partial_{nta}\Omega$ and not just on the (potentially smaller) set $\partial_*\Omega$ is necessary, even though it is $\partial_*\Omega$ which appears in the very formulation of the Divergence Formula.

Our Poisson Integral Representation Formula also holds for Ω unbounded under appropriate decay conditions.

• If Ω is an exterior domain, i.e., Ω is the complement of a compact subset of \mathbb{R}^n , we also ask that

G(x) = o(1) and u(x) = o(1) as $|x| \longrightarrow \infty$.

 \bullet If $\partial\Omega$ is unbounded, we make the additional assumption

 $\int_{\partial\Omega} \mathcal{N}_{\kappa} u \cdot \mathcal{N}_{\kappa}^{\Omega \setminus K} G \, d\sigma < +\infty \quad \text{where} \quad K := \overline{B(x_0, \rho)},$

(here $\mathcal{N}_{\kappa}^{\Omega\setminus K}$ denotes the nontangential maximal operator in which the essential supremum is taken over the portion of the nontangential approach region contained in $\Omega \setminus K$) Our Poisson Integral Representation Formula also holds for Ω unbounded under appropriate decay conditions.

• If Ω is an exterior domain, i.e., Ω is the complement of a compact subset of \mathbb{R}^n , we also ask that

G(x) = o(1) and u(x) = o(1) as $|x| \longrightarrow \infty$.

 \bullet If $\partial\Omega$ is unbounded, we make the additional assumption

 $\int_{\partial\Omega} \mathcal{N}_{\kappa} u \cdot \mathcal{N}_{\kappa}^{\Omega \setminus K} G \, d\sigma < +\infty \quad \text{where} \quad K := \overline{B(x_0, \rho)},$

(here $\mathcal{N}_{\kappa}^{\Omega\setminus K}$ denotes the nontangential maximal operator in which the essential supremum is taken over the portion of the nontangential approach region contained in $\Omega \setminus K$) Our Poisson Integral Representation Formula also holds for Ω unbounded under appropriate decay conditions.

• If Ω is an exterior domain, i.e., Ω is the complement of a compact subset of \mathbb{R}^n , we also ask that

G(x) = o(1) and u(x) = o(1) as $|x| \to \infty$.

 \bullet If $\partial \Omega$ is unbounded, we make the additional assumption

$$\int_{\partial\Omega} \mathcal{N}_{\kappa} u \cdot \mathcal{N}_{\kappa}^{\Omega \setminus K} G \, d\sigma < +\infty \quad \text{where} \quad K := \overline{B(x_0, \rho)},$$

(here $\mathcal{N}_{\kappa}^{\Omega \setminus K}$ denotes the nontangential maximal operator in which the essential supremum is taken over the portion of the nontangential approach region contained in $\Omega \setminus K$) Our theorem yields nontrivial, new results even in the case when $\Omega = \mathbb{R}^n_+$. Availing ourselves of estimates for the Green function for a system L in this setting (C.Martell/DM/I.Mitrea/M.Mitrea) our theorem gives that if u satisfies

$$\begin{cases} u \in \left[C^{\infty}(\mathbb{R}^{n}_{+})\right]^{M}, \quad Lu = 0 \text{ in } \mathbb{R}^{n}_{+}, \\ \int_{\mathbb{R}^{n-1}} \left(\mathcal{N}_{\kappa}u\right)(x') \frac{dx'}{1 + |x'|^{n-1}} < \infty, \end{cases}$$

then $u\Big|_{\mathbb{R}^{n-1}}^{k-n.t.}$ exists at \mathcal{L}^{n-1} -a.e. point in \mathbb{R}^{n-1} and u has the Poisson integral representation formula

$$u(x) = \int_{\mathbb{R}^{n-1}} P_t^L(x'-y') \big(u\big|_{\mathbb{R}^{n-1}}^{\kappa-\mathrm{n.t.}}\big)(y') \, dy' \qquad \forall \, x = (x',t) \in \mathbb{R}^n_+,$$

where P^L is the Agmon-Douglis-Nirenberg Poisson kernel for the system L in \mathbb{R}^n_+ and $P^L_t(x') = t^{1-n} P^L(x'/t)$ for all $x' \in \mathbb{R}^{n-1}, t > 0$.

Our theorem yields nontrivial, new results even in the case when $\Omega = \mathbb{R}^n_+$. Availing ourselves of estimates for the Green function for a system *L* in this setting (C.Martell/DM/I.Mitrea/M.Mitrea) our theorem gives that if *u* satisfies

$$\begin{cases} u \in \left[C^{\infty}(\mathbb{R}^{n}_{+})\right]^{M}, \quad Lu = 0 \text{ in } \mathbb{R}^{n}_{+}, \\ \int_{\mathbb{R}^{n-1}} \left(\mathcal{N}_{\kappa}u\right)(x') \frac{dx'}{1 + |x'|^{n-1}} < \infty, \end{cases}$$

then $u\Big|_{\mathbb{R}^{n-1}}^{k-n,t}$ exists at \mathcal{L}^{n-1} -a.e. point in \mathbb{R}^{n-1} and u has the Poisson integral representation formula

$$u(x) = \int_{\mathbb{R}^{n-1}} P_t^L(x' - y') \big(u \big|_{\mathbb{R}^{n-1}}^{\kappa-n.t.} \big)(y') \, dy' \qquad \forall \, x = (x', t) \in \mathbb{R}^n_+,$$

where P^L is the Agmon-Douglis-Nirenberg Poisson kernel for the system L in \mathbb{R}^n_+ and $P^L_t(x') = t^{1-n} P^L(x'/t)$ for all $x' \in \mathbb{R}^{n-1}, t > 0$.

Our theorem yields nontrivial, new results even in the case when $\Omega = \mathbb{R}^n_+$. Availing ourselves of estimates for the Green function for a system *L* in this setting (C.Martell/DM/I.Mitrea/M.Mitrea) our theorem gives that if *u* satisfies

$$\begin{cases} u \in \left[C^{\infty}(\mathbb{R}^{n}_{+})\right]^{M}, \quad Lu = 0 \text{ in } \mathbb{R}^{n}_{+}, \\ \int_{\mathbb{R}^{n-1}} \left(\mathcal{N}_{\kappa}u\right)(x') \frac{dx'}{1 + |x'|^{n-1}} < \infty, \end{cases}$$

then $u\Big|_{\mathbb{R}^{n-1}}^{\kappa-n.t.}$ exists at \mathcal{L}^{n-1} -a.e. point in \mathbb{R}^{n-1} and u has the Poisson integral representation formula

$$u(x) = \int_{\mathbb{R}^{n-1}} P_t^L(x' - y') \left(u \Big|_{\mathbb{R}^{n-1}}^{\kappa - n.t.} \right) (y') \, dy' \qquad \forall \, x = (x', t) \in \mathbb{R}^n_+,$$

where P^L is the Agmon-Douglis-Nirenberg Poisson kernel for the system L in \mathbb{R}^n_+ and $P^L_t(x') = t^{1-n} P^L(x'/t)$ for all $x' \in \mathbb{R}^{n-1}$, t > 0.

Theorem ([MMM 2018])

Let $\Omega \subseteq \mathbb{R}^n$, $n \geq 2$, be a bounded regular domain for the Dirichlet problem for Δ . Suppose Ω is locally pathwise nontangentially accessible, has a lower Ahlfors regular boundary, and $\sigma = \mathcal{H}^{n-1}\lfloor\partial\Omega$ is a doubling measure on $\partial\Omega$. Fix $x_0 \in \Omega$ and $\kappa > 0$, and assume that G, the Green function for the Δ with pole at x_0 , satisfies

 $\mathcal{N}_{\kappa}^{\varepsilon}(\nabla G) \in L^{1}(\partial\Omega, \sigma) \quad \text{for some } \varepsilon \in (0, \text{ dist } (x_{0}, \partial\Omega)),$ and $(\nabla G)\Big|_{\partial\Omega}^{\kappa-\text{n.t.}} \quad \text{exists at } \sigma\text{-a.e. point on } \partial\Omega.$

Then ω^{x_0} , the harmonic measure on $\partial\Omega$ with pole at x_0 , is absolutely continuous with respect to σ and

 $\frac{d\omega^{x_0}}{d\sigma} = -\mathbf{1}_{\partial_*\Omega} \cdot \partial_\nu G \quad at \ \sigma\text{-}a.e. \ point \ on \ \partial\Omega$

where ν is the De Giorgi-Federer outward unit normal to Ω

Theorem ([MMM 2018])

Let $\Omega \subseteq \mathbb{R}^n$, $n \geq 2$, be a bounded regular domain for the Dirichlet problem for Δ . Suppose Ω is locally pathwise nontangentially accessible, has a lower Ahlfors regular boundary, and $\sigma = \mathcal{H}^{n-1}\lfloor\partial\Omega$ is a doubling measure on $\partial\Omega$. Fix $x_0 \in \Omega$ and $\kappa > 0$, and assume that G, the Green function for the Δ with pole at x_0 , satisfies

 $\mathcal{N}_{\kappa}^{\varepsilon}(\nabla G) \in L^{1}(\partial\Omega, \sigma) \quad \text{for some } \varepsilon \in (0, \text{ dist } (x_{0}, \partial\Omega)),$ and $(\nabla G)\Big|_{\partial\Omega}^{\kappa-\text{n.t.}} \quad \text{exists at } \sigma\text{-a.e. point on } \partial\Omega.$

Then ω^{x_0} , the harmonic measure on $\partial\Omega$ with pole at x_0 , is absolutely continuous with respect to σ and

$$\frac{d\omega^{x_0}}{d\sigma} = -\mathbf{1}_{\partial_*\Omega} \cdot \partial_\nu G \quad at \ \sigma\text{-}a.e. \ point \ on \ \partial\Omega,$$

where ν is the De Giorgi-Federer outward unit normal to Ω .

Comments:

• Whenever $\omega^{x_0} \ll \sigma$, the Poisson kernel for Ω , defined as $k^{x_0} := \frac{d\omega^{x_0}}{d\sigma}$ belongs to $L^1(\partial\Omega, \sigma)$ (and satisfies $\int_{\partial\Omega} k^{x_0} d\sigma = 1$). As such, from the perspective of the conclusion we seek that $k^{x_0} = -\mathbf{1}_{\partial_*\Omega} \cdot \partial_{\nu}G$ at σ -a.e. point on $\partial\Omega$, the assumption $\mathcal{N}^{\varepsilon}_{\kappa}(\nabla G) \in L^1(\partial\Omega, \sigma)$ is natural.

• If Ω is a UR domain then $(\nabla G_{\Omega}(\cdot, x_0))\Big|_{\partial\Omega}^{\kappa-n.t.}$ exists at σ -a.e. point on $\partial\Omega$. This is a consequence of a more general Fatou type theorem in UR domains [MMM2018]:

If Ω is a UR domain in \mathbb{R}^n , $u \in C^{\infty}(\Omega)$, Lu = 0 in Ω , $\mathcal{N}_{\kappa}(\nabla u) \in L^p(\partial\Omega, \sigma)$ for some $\kappa > 0$ and $p \in \left(\frac{n-1}{n}, \infty\right)$, then $\left(\nabla u\right)\Big|_{\partial\Omega}^{\kappa-\mathrm{n.t.}}$ exists σ -a.e. on $\partial\Omega$.

Comments:

• Whenever $\omega^{x_0} \ll \sigma$, the Poisson kernel for Ω , defined as $k^{x_0} := \frac{d\omega^{x_0}}{d\sigma}$ belongs to $L^1(\partial\Omega, \sigma)$ (and satisfies $\int_{\partial\Omega} k^{x_0} d\sigma = 1$). As such, from the perspective of the conclusion we seek that $k^{x_0} = -\mathbf{1}_{\partial_*\Omega} \cdot \partial_\nu G$ at σ -a.e. point on $\partial\Omega$, the assumption $\mathcal{N}^{\varepsilon}_{\kappa}(\nabla G) \in L^1(\partial\Omega, \sigma)$ is natural.

• If Ω is a UR domain then $(\nabla G_{\Omega}(\cdot, x_0))\Big|_{\partial\Omega}^{\kappa-n.t.}$ exists at σ -a.e. point on $\partial\Omega$. This is a consequence of a more general Fatou type theorem in UR domains [MMM2018]:

If Ω is a UR domain in \mathbb{R}^n , $u \in C^{\infty}(\Omega)$, Lu = 0 in Ω , $\mathcal{N}_{\kappa}(\nabla u) \in L^p(\partial\Omega, \sigma)$ for some $\kappa > 0$ and $p \in \left(\frac{n-1}{n}, \infty\right)$, then $\left(\nabla u\right)\Big|_{\partial\Omega}^{\kappa-\mathrm{n.t.}}$ exists σ -a.e. on $\partial\Omega$.

Comments:

• Whenever $\omega^{x_0} \ll \sigma$, the Poisson kernel for Ω , defined as $k^{x_0} := \frac{d\omega^{x_0}}{d\sigma}$ belongs to $L^1(\partial\Omega, \sigma)$ (and satisfies $\int_{\partial\Omega} k^{x_0} d\sigma = 1$). As such, from the perspective of the conclusion we seek that $k^{x_0} = -\mathbf{1}_{\partial_*\Omega} \cdot \partial_\nu G$ at σ -a.e. point on $\partial\Omega$, the assumption $\mathcal{N}^{\varepsilon}_{\kappa}(\nabla G) \in L^1(\partial\Omega, \sigma)$ is natural.

• If Ω is a UR domain then $(\nabla G_{\Omega}(\cdot, x_0))\Big|_{\partial\Omega}^{\kappa-n.t.}$ exists at σ -a.e. point on $\partial\Omega$. This is a consequence of a more general Fatou type theorem in UR domains [MMM2018]:

If Ω is a UR domain in \mathbb{R}^n , $u \in C^{\infty}(\Omega)$, Lu = 0 in Ω , $\mathcal{N}_{\kappa}(\nabla u) \in L^p(\partial\Omega, \sigma)$ for some $\kappa > 0$ and $p \in \left(\frac{n-1}{n}, \infty\right)$, then $\left(\nabla u\right)\Big|_{\partial\Omega}^{\kappa-\mathrm{n.t.}}$ exists σ -a.e. on $\partial\Omega$. **Sketch of proof:** Let $f \in C^0(\partial\Omega)$ and consider

 $u \in C^{\infty}(\Omega) \cap C^{0}(\overline{\Omega}), \quad \Delta u = 0 \text{ in } \Omega, \quad u\Big|_{\partial \Omega} = f.$

Then $u(x_0) = \int_{\partial\Omega} f \, d\omega^{x_0}$ while our Poisson Integral Representation Formula gives

$$u(x_0) = -\int_{\partial_*\Omega} f(\partial_\nu G) \, d\sigma.$$

Now the arbitrariness of $f \in C^0(\partial \Omega)$ yields the desired conclusion, i.e.,

 $\frac{d\omega^{x_0}}{d\sigma} = -\mathbf{1}_{\partial_*\Omega} \cdot \partial_
u G$ at σ -a.e. point on $\partial\Omega$.

Sketch of proof: Let $f \in C^0(\partial\Omega)$ and consider

 $u \in C^{\infty}(\Omega) \cap C^{0}(\overline{\Omega}), \quad \Delta u = 0 \text{ in } \Omega, \quad u\Big|_{\partial \Omega} = f.$

Then $u(x_0) = \int_{\partial\Omega} f \, d\omega^{x_0}$ while our Poisson Integral Representation Formula gives

$$u(x_0) = -\int_{\partial_*\Omega} f(\partial_\nu G) \, d\sigma.$$

Now the arbitrariness of $f \in C^0(\partial \Omega)$ yields the desired conclusion, i.e.,

 $\frac{d\omega^{x_0}}{d\sigma} = -\mathbf{1}_{\partial_*\Omega} \cdot \partial_\nu G \text{ at } \sigma\text{-a.e. point on } \partial\Omega.$