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The classical Poisson integral representation formula for ∆

Let Ω = B(0, 1) ⊂ Rn. Then if k(x, y) :=
1− |x|2

ωn−1|x− y|n
for x 6= y,

u ∈ C2(Ω)

∆u = 0 in Ω

}
=⇒ u(x) =

∫
∂Ω
k(x, y)

(
u
∣∣
∂Ω

)
(y) dσ(y) ∀x ∈ Ω

k(x, y) is the Poisson kernel for the Laplacian for the unit ball.
Comments:
• Regarding the nature of k, we have k(x, y) = −∂ν(y)[G(x, y)], where
G is the Green function for the Laplacian in Ω; i.e., for each x ∈ Ω:{

G(x, ·) ∈ C∞(Ω \ {x}) ∩ L1
loc(Ω)

∆yG(x, y) = −δx(y), G(x, ·)
∣∣
∂Ω

= 0

Alternatively, we may define k :=
dω

dσ
but then the question becomes

when is k(x, y) = −∂ν(y)[G(x, y)] (e.g., issue explicitly raised in
Garnett & Marshall Harmonic Measure [Question 2, page 49]).
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• In the proof of the Poisson formula, use the classical Divergence
Theorem in the bounded C1 domain Ωε := Ω \B(x, ε), ε > 0 small,
where x ∈ Ω is an arbitrary fixed point, for the divergence-free
vector field

~F := u∇G−G∇u ∈ C1(Ωε)

and then take the limit as ε→ 0+. The assumption u ∈ C2(Ω) is
needed in the proof to ensure the regularity of ~F , but seems like an
overkill as far as the conclusion

u(x) =

∫
∂Ω
∂ν(y)[G(x, y)]

(
u
∣∣
∂Ω

)
(y) dσ(y)

is concerned.

• In principle, the approach is robust and may be adapted to other
more general partial differential operators than the Laplacian.

D. Mitrea (MU) 3 / 35



• In the proof of the Poisson formula, use the classical Divergence
Theorem in the bounded C1 domain Ωε := Ω \B(x, ε), ε > 0 small,
where x ∈ Ω is an arbitrary fixed point, for the divergence-free
vector field

~F := u∇G−G∇u ∈ C1(Ωε)

and then take the limit as ε→ 0+. The assumption u ∈ C2(Ω) is
needed in the proof to ensure the regularity of ~F , but seems like an
overkill as far as the conclusion

u(x) =

∫
∂Ω
∂ν(y)[G(x, y)]

(
u
∣∣
∂Ω

)
(y) dσ(y)

is concerned.

• In principle, the approach is robust and may be adapted to other
more general partial differential operators than the Laplacian.

D. Mitrea (MU) 3 / 35



Present Goal: Find geometric and analytic assumptions, in the
nature of “best possible”, ensuring the validity of the Poisson
integral representation formula

u = −
∫
∂Ω
∂ν(y)[G(·, y)]

(
u
∣∣
∂Ω

)
(y) dσ(y)

Specifically:

• the nature of Ω is best described in the language of geometric
measure theory; from now on, σ := Hn−1b∂Ω and the outward unit
normal ν is the De Giorgi-Federer normal for sets of locally finite
perimeter (Hn−1 is the (n− 1)-dim. Hausdorff measure in Rn).

• boundary traces taken in the nontangential approach sense

• replace the Laplacian by general weakly elliptic homogeneous
constant complex coefficient second-order systems

• impose minimal size and smoothness assumptions on the solution
u and Green function G
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The domain

Suppose Ω is an open subset of Rn satisfying the following
properties:

• ∂Ω is lower Ahlfors-David regular, i.e., there exists c ∈ (0,∞) such
that

c r n−1 ≤ Hn−1
(
B(x, r)∩Σ

)
for each x ∈ Σ and r ∈

(
0, 2 diam (Σ)

)
.

• σ = Hn−1b∂Ω is a doubling measure on ∂Ω, i.e., there exists some
C ≥ 1 such that 0 < σ

(
B(x, 2r) ∩ ∂Ω

)
≤ Cσ

(
B(x, r) ∩ ∂Ω

)
< +∞

for all x ∈ ∂Ω and r ∈ (0,∞).

Note: If ∂Ω is both upper and lower Ahlfors-David regular then
automatically σ is a doubling measure.
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The domain

Fact: If σ is locally finite then Ω is a set of locally finite perimeter.
As such, the De Giorgi-Federer unit normal ν to Ω exists and is
defined σ-a.e. on the geometric measure theoretic boundary ∂∗Ω

∂∗Ω :=
{
x ∈ Rn : lim sup

r→0+

Ln(B(x, r) ∩ Ω)

r n
> 0 and

lim sup
r→0+

Ln(B(x, r) \ Ω)

r n
> 0
}
,

where Ln is the Lebesgue measure in Rn. Fix κ > 0 playing the role
of aperture parameter. For each x ∈ ∂Ω define the nontangential
approach region

Γκ(x) :=
{
y ∈ Ω : |y − x| < (1 + κ)dist (y, ∂Ω)

}
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The domain

• Ω is locally pathwise nontangentially accessible if Ω is open and:

given any κ > 0 there exist κ̃ ≥ κ along with c ∈ [1,∞) and
d > 0 such that σ-a.e. point x ∈ ∂Ω has the property that any
y ∈ Γκ(x) with dist (y, ∂Ω) < d may be joined by a rectifiable
curve γx,y satisfying γx,y \ {x} ⊂ Γκ̃(x) and whose length is
≤ c|x− y|.

D. Mitrea (MU) 7 / 35



Nontangential maximal operator and nontangential traces

The nontangential maximal operator with aperture κ acts on any
measurable function u : Ω→ C according to(

Nκu
)
(x) := ‖u‖L∞(Γκ(x)), x ∈ ∂Ω,

and the nontangential boundary trace of u is defined as(
u
∣∣κ−n.t.

∂Ω

)
(x) := lim

Γκ(x)3y→x
u(y),

whenever x ∈ ∂Ω is such that x ∈ Γκ(x).

For ρ > 0 define the truncated nontangential maximal operator(
N ρ
κu
)
(x) := ‖u‖L∞(Γκ(x)∩Oρ), x ∈ ∂Ω,

where Oρ := {y ∈ Ω : dist(y, ∂Ω) < ρ}.
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The operator

Fix n,M ∈ N, with n ≥ 2. We work with a homogeneous M ×M
second-order complex constant coefficient system in Rn (with the
summation convention over repeated indices)

L =
(
aαβrs ∂r∂s

)
1≤α,β≤M

which is weakly elliptic, i.e., its M ×M symbol matrix

L(ξ) :=
(
aαβrs ξrξs

)
1≤α,β≤M , ∀ ξ = (ξr)1≤r≤n ∈ Rn,

satisfies
det
[
L(ξ)

]
6= 0, ∀ ξ ∈ Rn \ {0}.

Examples to keep in mind.
Scalar operators: L = ajk∂j∂k with ajk ∈ C (e.g., the Laplacian).
Genuine systems: L = µ∆ + (λ+ µ)∇div with µ, λ ∈ C (Lamé-like).

D. Mitrea (MU) 9 / 35



The operator

Fix n,M ∈ N, with n ≥ 2. We work with a homogeneous M ×M
second-order complex constant coefficient system in Rn (with the
summation convention over repeated indices)

L =
(
aαβrs ∂r∂s

)
1≤α,β≤M

which is weakly elliptic, i.e., its M ×M symbol matrix

L(ξ) :=
(
aαβrs ξrξs

)
1≤α,β≤M , ∀ ξ = (ξr)1≤r≤n ∈ Rn,

satisfies
det
[
L(ξ)

]
6= 0, ∀ ξ ∈ Rn \ {0}.

Examples to keep in mind.
Scalar operators: L = ajk∂j∂k with ajk ∈ C (e.g., the Laplacian).
Genuine systems: L = µ∆ + (λ+ µ)∇div with µ, λ ∈ C (Lamé-like).
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Coefficient tensors

Consider the coefficient tensor

A =
(
aαβrs
)

1≤r,s≤n
1≤α,β≤M

where aαβrs ∈ C. Its transposed is given by

A> :=
(
aβαsr
)

1≤s,r≤n
1≤β,α≤M

.

With each such A we may canonically associate a homogeneous
constant (complex) coefficient second-order M ×M system LA in Rn
which is expressed as

LA :=
(
aαβrs ∂r∂s

)
1≤α≤M
1≤β≤N.

In particular, (LA)> = LA> .
Note: Given a homogeneous second-order system L, there exist
infinitely many coefficient tensors A such that L = LA.
D. Mitrea (MU) 10 / 35



Conormal derivative

Let Ω be a set of locally finite perimeter in Rn. Denote by
ν = (νr)1≤r≤n the De Giorgi-Federer outward unit normal to Ω
(defined σ-a.e. on ∂∗Ω). Let A =

(
aαβrs
)

1≤r,s≤n
1≤α,β≤M

be a coefficient

tensor with complex entries. Also fix an aperture parameter κ > 0.

If u ∈
[
W 1,1

loc (Ω)
]M

then the conormal derivative of u with respect to

the coefficient tensor A and the set Ω is the CM -valued function

∂Aν u :=
(
νra

αβ
rs

(
∂suβ

)∣∣κ−n.t.

∂Ω

)
1≤α≤M

at σ-a.e. point on ∂∗Ω,

whenever meaningful.

Note: Starting with a homogeneous second-order system L, for each
writing L = LA there corresponds a typically distinct conormal
derivative ∂Aν .
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Main Theorem

Theorem (A Sharp Poisson formula [MMM2018])

Let Ω ⊂ Rn be a bounded locally pathwise nontangentially accessible
set with a lower Ahlfors-David regular boundary and such that
σ := Hn−1b∂Ω is a doubling measure on ∂Ω.

Suppose L is a weakly elliptic, homogenous, constant complex
coefficient, second-order, M ×M system in Rn.

Fix an aperture parameter κ > 0, along with an arbitrary point
x0 ∈ Ω, and choose a truncation 0 < ρ < 1

4 dist (x0, ∂Ω).

Then there exists some κ̃ > 0, which depends only on Ω and κ, with
the following significance.
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Theorem (Continuation)

Assume G is a matrix-valued function satisfying

G ∈
[
L1

loc(Ω)
]M×M

,

L>G = −δx0IM×M in D′(Ω),(
∇G

)∣∣∣κ̃−n.t.

∂Ω
exists at σ-a.e. point on ∂Ω,

G
∣∣∣κ̃−n.t.

∂Ω
= 0 at σ-a.e. point on ∂Ω,

and assume u is a CM -valued function satisfying
u ∈

[
C∞(Ω)

]M
, Lu = 0 in Ω,

u
∣∣κ−n.t.

∂Ω
exists at σ-a.e. point on ∂Ω,∫

∂Ω
N ρ
κu · N

ρ
κ̃ (∇G) dσ < +∞.
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Theorem (Continuation)

Then for any choice of a coefficient tensor A which permits writing
L as LA, one has the Poisson integral representation formula

u(x0) = −
∫
∂∗Ω

〈
u
∣∣κ−n.t.

∂Ω
, ∂A

>
ν G

〉
dσ

where ν denotes the De Giorgi-Federer outward unit normal to Ω

and ∂A
>

ν stands for the conormal derivative associated with A>

acting on the columns of the matrix-valued function G.
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A few examples when

∫
∂Ω
N ρ
κu · N

ρ
κ̃ (∇G) dσ < +∞ holds include,

with p, q, p ′, q ′ ∈ [1,∞] satisfy 1/p+ 1/p ′ = 1 = 1/q + 1/q ′,

• Ordinary Lebesgue spaces: N ρ
κu ∈ Lp(∂Ω, σ) and

N ρ
κ (∇G) ∈ Lp ′(∂Ω, σ)

• Muckenhoupt weighted Lebesgue spaces: N ρ
κu ∈ Lp(∂Ω, w σ) and

N ρ
κ (∇G) ∈ Lp ′(∂Ω, w1−p ′σ), where w ∈ Ap(∂Ω, σ)

• Lorentz spaces: N ρ
κu ∈ Lp,q(∂Ω, σ) and N ρ

κ (∇G) ∈ Lp ′, q ′(∂Ω, σ)

• Morrey spaces and their pre-duals....

In particular, one immediately obtains uniqueness for the Dirichlet
problem in the corresponding settings.

D. Mitrea (MU) 15 / 35



A few examples when

∫
∂Ω
N ρ
κu · N

ρ
κ̃ (∇G) dσ < +∞ holds include,

with p, q, p ′, q ′ ∈ [1,∞] satisfy 1/p+ 1/p ′ = 1 = 1/q + 1/q ′,

• Ordinary Lebesgue spaces: N ρ
κu ∈ Lp(∂Ω, σ) and

N ρ
κ (∇G) ∈ Lp ′(∂Ω, σ)

• Muckenhoupt weighted Lebesgue spaces: N ρ
κu ∈ Lp(∂Ω, w σ) and

N ρ
κ (∇G) ∈ Lp ′(∂Ω, w1−p ′σ), where w ∈ Ap(∂Ω, σ)

• Lorentz spaces: N ρ
κu ∈ Lp,q(∂Ω, σ) and N ρ

κ (∇G) ∈ Lp ′, q ′(∂Ω, σ)

• Morrey spaces and their pre-duals....

In particular, one immediately obtains uniqueness for the Dirichlet
problem in the corresponding settings.

D. Mitrea (MU) 15 / 35



A few examples when

∫
∂Ω
N ρ
κu · N

ρ
κ̃ (∇G) dσ < +∞ holds include,

with p, q, p ′, q ′ ∈ [1,∞] satisfy 1/p+ 1/p ′ = 1 = 1/q + 1/q ′,

• Ordinary Lebesgue spaces: N ρ
κu ∈ Lp(∂Ω, σ) and

N ρ
κ (∇G) ∈ Lp ′(∂Ω, σ)

• Muckenhoupt weighted Lebesgue spaces: N ρ
κu ∈ Lp(∂Ω, w σ) and

N ρ
κ (∇G) ∈ Lp ′(∂Ω, w1−p ′σ), where w ∈ Ap(∂Ω, σ)

• Lorentz spaces: N ρ
κu ∈ Lp,q(∂Ω, σ) and N ρ

κ (∇G) ∈ Lp ′, q ′(∂Ω, σ)

• Morrey spaces and their pre-duals....

In particular, one immediately obtains uniqueness for the Dirichlet
problem in the corresponding settings.

D. Mitrea (MU) 15 / 35



A few examples when

∫
∂Ω
N ρ
κu · N

ρ
κ̃ (∇G) dσ < +∞ holds include,

with p, q, p ′, q ′ ∈ [1,∞] satisfy 1/p+ 1/p ′ = 1 = 1/q + 1/q ′,

• Ordinary Lebesgue spaces: N ρ
κu ∈ Lp(∂Ω, σ) and

N ρ
κ (∇G) ∈ Lp ′(∂Ω, σ)

• Muckenhoupt weighted Lebesgue spaces: N ρ
κu ∈ Lp(∂Ω, w σ) and

N ρ
κ (∇G) ∈ Lp ′(∂Ω, w1−p ′σ), where w ∈ Ap(∂Ω, σ)

• Lorentz spaces: N ρ
κu ∈ Lp,q(∂Ω, σ) and N ρ

κ (∇G) ∈ Lp ′, q ′(∂Ω, σ)

• Morrey spaces and their pre-duals....

In particular, one immediately obtains uniqueness for the Dirichlet
problem in the corresponding settings.

D. Mitrea (MU) 15 / 35



A few examples when

∫
∂Ω
N ρ
κu · N

ρ
κ̃ (∇G) dσ < +∞ holds include,

with p, q, p ′, q ′ ∈ [1,∞] satisfy 1/p+ 1/p ′ = 1 = 1/q + 1/q ′,

• Ordinary Lebesgue spaces: N ρ
κu ∈ Lp(∂Ω, σ) and

N ρ
κ (∇G) ∈ Lp ′(∂Ω, σ)

• Muckenhoupt weighted Lebesgue spaces: N ρ
κu ∈ Lp(∂Ω, w σ) and

N ρ
κ (∇G) ∈ Lp ′(∂Ω, w1−p ′σ), where w ∈ Ap(∂Ω, σ)

• Lorentz spaces: N ρ
κu ∈ Lp,q(∂Ω, σ) and N ρ

κ (∇G) ∈ Lp ′, q ′(∂Ω, σ)

• Morrey spaces and their pre-duals....

In particular, one immediately obtains uniqueness for the Dirichlet
problem in the corresponding settings.

D. Mitrea (MU) 15 / 35



A few examples when

∫
∂Ω
N ρ
κu · N

ρ
κ̃ (∇G) dσ < +∞ holds include,

with p, q, p ′, q ′ ∈ [1,∞] satisfy 1/p+ 1/p ′ = 1 = 1/q + 1/q ′,

• Ordinary Lebesgue spaces: N ρ
κu ∈ Lp(∂Ω, σ) and

N ρ
κ (∇G) ∈ Lp ′(∂Ω, σ)

• Muckenhoupt weighted Lebesgue spaces: N ρ
κu ∈ Lp(∂Ω, w σ) and

N ρ
κ (∇G) ∈ Lp ′(∂Ω, w1−p ′σ), where w ∈ Ap(∂Ω, σ)

• Lorentz spaces: N ρ
κu ∈ Lp,q(∂Ω, σ) and N ρ

κ (∇G) ∈ Lp ′, q ′(∂Ω, σ)

• Morrey spaces and their pre-duals....

In particular, one immediately obtains uniqueness for the Dirichlet
problem in the corresponding settings.

D. Mitrea (MU) 15 / 35



Proof

Fix β ∈ {1, . . . ,M} and define the vector field

~F :=
(
uαa

γ α
kj ∂kGγ β −Gαβ a

αγ
jk ∂kuγ

)
1≤j≤n

a.e. in Ω.

The strategy to prove the desired integral representation formula is
to apply to this vector field a suitable version of the Divergence
Theorem, much more potent than the classical one.
A word of caution: The classical Divergence Formula for bdd. C1

domains and C1 vector fields on the closure fails hopelessly short,
and so does the De Giorgi-Federer version (involving sets of locally
finite perimeters but requiring the vector field to be C1 with
compact support in the entire Rn).

Step I. From G ∈
[
C∞(Ω \ {x0}) ∩W 1,1

loc (Ω)
]M×M

and

u ∈
[
C∞(Ω)

]M
it follows that

~F ∈
[
L1

loc(Ω)
]n
.
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Step II. Show that div ~F = −uβ(x0) δx0 in D′(Ω).

In the sense of distributions in Ω, we have

div ~F= (∂juα) aγ αkj (∂kGγ β) + uα a
γ α
kj (∂j∂kGγ β)

−(∂jGαβ) aαγjk (∂kuγ)−Gαβ aαγjk (∂j∂kuγ) =: I1 + I2 + I3 + I4.

Changing variables j ′ = k, k ′ = j, α ′ = γ, and γ ′ = α in I3 yields

I3 = −(∂k ′Gγ ′β) aγ
′α′

k ′j ′ (∂j ′uα ′) = −I1

while, I4 = −Gαβ (LAu)α = −Gαβ (Lu)α = 0. In addition,

I2 = uα(LA>G .β)α = uα(L>G .β)α = −uαδαβδx0 = −uβ(x0) δx0 .

Hence, in the sense of distributions in Ω,

div ~F = −uβ(x0) δx0 ∈ E ′(Ω)
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Step III. Show that ~F
∣∣κ−n.t.

∂Ω
exists at σ-a.e. point on ∂Ω.

Recall that ~F = (Fj)1≤j≤n with

Fj = uαa
γ α
kj ∂kGγ β −Gαβ a

αγ
jk ∂kuγ , j ∈ {1, . . . , n}

and that, by assumption,

(
∇G

)∣∣∣κ̃−n.t.

∂Ω
and u

∣∣κ−n.t.

∂Ω
exist at σ-a.e. point on ∂Ω.

Since κ̃ ≥ κ, the first piece in Fj is OK. We are left with proving
that (

G∇u
)∣∣∣κ−n.t.

∂Ω
exists at σ-a.e. point on ∂Ω.
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Define the nontangentially accessible boundary of Ω by

∂ntaΩ :=
{
x ∈ ∂Ω : x ∈ Γκ(x) for each κ > 0

}
.

Fact: Ω locally pathwise nontangentially accessible set and σ
doubling measure on ∂Ω=⇒ Hn−1

(
∂Ω \ ∂ntaΩ

)
= 0

Choose a suitable (dictated by geometry) κ̃ > κ and set

N1 :=
{
x ∈ ∂Ω : N ρ

κ̃(∇G)(x) = +∞ or
(
G
∣∣κ̃−n.t.

∂Ω

)
(x) 6= 0

}
,

N2 :=
{
x ∈ ∂ntaΩ :

(
u
∣∣κ−n.t.

∂Ω

)
(x) fails to exist

}
,

N3 :=
{
x ∈ ∂Ω excluded in the locally pathwise n.t.a. definition

}
.

Let N := N1 ∪N2 ∪N3.
Then the current assumptions ultimately imply σ(N) = 0.

Now fix x ∈ ∂ntaΩ \N and pick y ∈ Γκ(x) with δ∂Ω(y) := dist (y, ∂Ω)
sufficiently small. Let γxy be a rectifiable curve joining x and y
guaranteed to exist by the locally pathwise nontangential
accessibility of Ω.
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Since, by design,
(
G
∣∣κ̃−n.t.

∂Ω

)
(x) = 0, using the Fundamental Theorem

of Calculus, we may estimate

G(y) = G
(
γxy(t)

)∣∣∣t=1

t=0
=

∫ 1

0

d

dt

[
G
(
γxy(t)

)]
dt

=

∫ 1

0
(∇G)

(
γxy(t)

)
· d
dt

[
γxy(t)

]
dt

The choice of κ̃ implies γxy((0, 1]) ⊂ Γκ̃(x) and the smallness of
δ∂Ω(y) is tailored to ensure dist (γxy, ∂Ω) < ρ.
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Recall γxy((0, 1]) ⊂ Γκ̃(x) and dist (γxy, ∂Ω) < ρ. In addition,

length(γxy([0, 1])) ≤ c|x− y| ≤ c(1 + κ)dist(y, ∂Ω) = Cδ∂Ω(y).

As we have just seen, the Fundamental Theorem of Calculus gives

G(y) =

∫ 1

0
(∇G)

(
γxy(t)

)
· d
dt

[
γxy(t)

]
dt

so we may further estimate

|G(y)| ≤ N ρ
κ̃ (∇G)(x) · length(γxy([0, 1]))

≤ N ρ
κ̃ (∇G)(x) · C · δ∂Ω(y)︸ ︷︷ ︸

rate of vanishing
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Using interior estimates in B
(
y , a · δ∂Ω(y)

)
with a > 0 small for

w(z) := u(z)−
(
u
∣∣κ−n.t.

∂Ω

)
(x), z ∈ Ω, which is a null-solution for L,

|(∇u)(y)| = |(∇w)(y)| ≤ C

δ∂Ω(y)

∫
−
B(y,a·δ∂Ω(y))

∣∣∣u(z)−
(
u
∣∣κ−n.t.

∂Ω

)
(x)
∣∣∣ dz

≤ C · δ∂Ω(y)−1︸ ︷︷ ︸
blow up rate

· sup
z∈Γκo (x)

|x−z|<(1+c)δ∂Ω(y)

∣∣∣u(z)−
(
u
∣∣κ−n.t.

∂Ω

)
(x)
∣∣∣

for some κo > 0 big. Unfortunately κo > κ, so we loose control!

Remedy:
start with y ∈ Γκ′(x) for suitable κ′ < κ to end up with z ∈ Γκ(x).
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Hence matters can be arranged so that

|(∇u)(y)| ≤ C · δ∂Ω(y)−1︸ ︷︷ ︸
blow up rate

· sup
z∈Γκ(x)

|x−z|<(1+c)δ∂Ω(y)

∣∣∣u(z)−
(
u
∣∣κ−n.t.

∂Ω

)
(x)
∣∣∣.

When combined with the earlier estimate on G, namely

|G(y)| ≤ C · δ∂Ω(y)︸ ︷︷ ︸
vanishing rate

· N ρ
κ̃ (∇G)(x),

this yields

|G(y)||(∇u)(y)| ≤ CN ρ
κ̃ (∇G)(x) · sup

z∈Γκ(x)
|x−z|<(1+c)δ∂Ω(y)

∣∣∣u(z)−
(
u
∣∣κ−n.t.

∂Ω

)
(x)
∣∣∣

︸ ︷︷ ︸
qualitative vanishing rate

Consequently,

lim
Γκ(x)3y→x

|G(y)||(∇u)(y)| = 0 for each x ∈ ∂ntaΩ \N.
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Hence ~F
∣∣κ−n.t.

∂Ω
exists at all points in ∂ntaΩ \N .

Since σ
(
∂Ω \ (∂ntaΩ \N)

)
= 0, this nontangential trace exists at

σ-a.e. point on ∂Ω and, in fact

~F
∣∣∣κ−n.t.

∂Ω
=
((
uα
∣∣κ−n.t.

∂Ω

)
aγ αkj

(
∂kGγ β

)∣∣κ̃−n.t.

∂Ω

)
1≤j≤n

.

Step IV. Show that there exists some ε0 > 0 such that

N ε0
κ
~F ∈ L1(∂Ω, σ).
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• Choose ε0 < ρ sufficiently small and fix x ∈ ∂ntaΩ. For each
y ∈ Γκ(x) with δ∂Ω(y) < ε0 use interior estimates for u

|(∇u)(y)|≤ C

δ∂Ω(y)

∫
−
B(y,a·δ∂Ω(y))

|u(z)| dz

≤ Cδ∂Ω(y)−1 · sup
z∈Γκ(x)

|x−z|<(1+c)δ∂Ω(y)

|u(z)| ≤ C δ∂Ω(y)−1·
(
N ρ
κu
)
(x).

• Recall the earlier estimate |G(y)| ≤ C δ∂Ω(y) ·N ρ
κ̃ (∇G)(x).

• Hence N ε0
κ

(
|G||∇u|

)
≤ CN ρ

κ̃ (∇G) · N ρ
κu at σ-a.e. point on ∂Ω.

• Also, N ε0
κ

(
|∇G||u|

)
≤ N ε0

κ (∇G) · N ε0
κ u ≤ N ρ

κ̃ (∇G) · N ρ
κu at each

point on ∂Ω.

Since by assumption N ρ
κu · N

ρ
κ̃ (∇G) ∈ L1(∂Ω, σ), it follows that

N ε0
κ
~F ∈ L1(∂Ω, σ).
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In summary, for the current choice of ~F we have proved

~F ∈
[
L1

loc(Ω)
]n
, div ~F = −uβ(x0) δx0 ∈ E ′(Ω),

N ε0
κ
~F ∈ L1(∂Ω, σ) for some ε0 > 0,

~F
∣∣κ−n.t.

∂Ω
exists at σ-a.e. point on ∂Ω and

~F
∣∣∣κ−n.t.

∂Ω
=
((
uα
∣∣κ−n.t.

∂Ω

)
aγ αkj

(
∂kGγ β

)∣∣κ̃−n.t.

∂Ω

)
1≤j≤n

.

Step V. Apply the Divergence Theorem (to be stated next):

−uβ(x0) = (C∞b (Ω))
∗
(
div ~F , 1

)
C∞b (Ω)

=

∫
∂∗Ω

ν ·
(
~F
∣∣κ−n.t.

∂Ω

)
dσ

=

∫
∂∗Ω

(
uα
∣∣κ−n.t.

∂Ω

)
νja

γ α
kj

(
∂kGγ β

)∣∣κ̃−n.t.

∂Ω
dσ

=

∫
∂∗Ω

〈
u
∣∣κ−n.t.

∂Ω
, ∂A

>
ν G.β

〉
dσ,

ν = (νj)j being the De Giorgi-Federer outward unit normal to Ω.
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C∞b (Ω) :=
{
f ∈ C∞(Ω) : f bounded in Ω

}
A sequence {fj}j∈N ⊂ C∞b (Ω) converges to f ∈ C∞b (Ω) provided

sup
j∈N

sup
x∈Ω
|fj(x)| < +∞

∀ compact K ⊂ Ω ∃ jK ∈ N such that fj ≡ f on K if j ≥ jK .

Let
(
C∞b (Ω)

)∗
denote the algebraic dual of this linear space, so that

lim
j→∞ (C∞b (Ω))

∗
(
Λ , fj

)
C∞b (Ω)

= (C∞b (Ω))
∗
(
Λ , f

)
C∞b (Ω)

whenever Λ ∈
(
C∞b (Ω)

)∗
and lim

j→∞
fj = f in C∞b (Ω)

• If u ∈ D′(Ω) and exist Λu ∈
(
C∞b (Ω)

)∗
then this extension is

unique.
• E ′(Ω) + L1(Ω) ⊆

(
C∞b (Ω)

)∗
If u = w + g, w ∈ E ′(Ω), g ∈ L1(Ω),

then Λu ∈
(
C∞b (Ω)

)∗
where

(C∞b (Ω))∗
(
Λu, f

)
C∞b (Ω)

:= E ′(Ω)〈w, f 〉E(Ω) +

∫
Ω
fg dLn, ∀ f ∈ C∞b (Ω)
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Theorem (Divergence Theorem [MMM 2018])

Let Ω ⊂ Rn be bounded, open, with a lower Ahlfors-David regular
boundary, such that σ := Hn−1b∂Ω is a doubling measure on ∂Ω.
Let ν be the De Giorgi-Federer outward unit normal to Ω. Fix κ > 0
and assume

~F ∈
[
E ′(Ω) + L1

loc(Ω)
]n ⊂ [D ′(Ω)

]n
is a vector field satisfying (for some 0 < ε < dist (regsupp ~F , ∂Ω))

N ε
κ
~F ∈ L1(∂Ω, σ), ~F

∣∣κ−n.t.

∂Ω
exists σ-a.e. on ∂ntaΩ, and

div ~F ∈ D′(Ω) extends to a continuous functional in (C∞b (Ω))∗ .

Then for any κ ′ > 0 the trace ~F
∣∣κ ′−n.t.

∂Ω
exists σ-a.e. on ∂ntaΩ and

agrees with ~F
∣∣κ−n.t.

∂Ω
and, with the dependence on aperture dropped,

(C∞b (Ω))
∗
(
div ~F , 1

)
C∞b (Ω)

=

∫
∂∗Ω

ν ·
(
~F
∣∣n.t.
∂Ω

)
dσ.
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Sharpness aspect of our Divergence Theorem: Let Ω be the
slit unit ball in Rn

Ω

Then ∂Ω = Sn−1 ∪ {(x′, 0) : |x′| < 1}, ∂∗Ω = Sn−1,
∂ntaΩ = ∂Ω \ {(x′, 0) : |x′| = 1} ⇒ ∂ntaΩ \ ∂∗Ω = {(x′, 0) : |x′| < 1}
Also let

~F :=

{
+en in Ω ∩ Rn+,

−en in Ω ∩ Rn−.

Observe that ~F ∈
[
C∞(Ω)

]n
, div ~F = 0 in Ω,

Nκ ~F ∈ L∞(∂Ω, σ) ⊂ L1(∂Ω, σ) for all κ > 0,

~F
∣∣κ−n.t.

∂Ω
= ±en at every point on Sn−1

± := Sn−1 ∩ Rn±. In particular,

the nontangential trace of ~F exists σ-a.e. on ∂∗Ω,

however ~F
∣∣κ−n.t.

∂Ω
does not exist at any point on {(x′, 0) : |x′| < 1}.
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Hence, on the one hand we have∫
∂∗Ω

ν ·
(
~F
∣∣κ−n.t.

∂Ω

)
dσ=

∫
Sn−1

+

ν · en dHn−1 −
∫
Sn−1
−

ν · en dHn−1

= 2

∫
|x′|<1

en · en dHn−1 = 2Hn−1
(
{|x′| < 1}

)
6= 0,

while on the other hand,

∫
Ω

div ~F dLn = 0.

Conclusion: The demand that ~F
∣∣κ−n.t.

∂Ω
exists σ-a.e. on ∂ntaΩ and not

just on the (potentially smaller) set ∂∗Ω is necessary, even though
it is ∂∗Ω which appears in the very formulation of the Divergence
Formula.
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Our Poisson Integral Representation Formula also holds for Ω
unbounded under appropriate decay conditions.

• If Ω is an exterior domain, i.e., Ω is the complement of a compact
subset of Rn, we also ask that

G(x) = o(1) and u(x) = o(1) as |x| −→ ∞.

• If ∂Ω is unbounded, we make the additional assumption∫
∂Ω
Nκu · N Ω\K

κ Gdσ < +∞ where K := B(x0, ρ),

(here N Ω\K
κ denotes the nontangential maximal operator in which

the essential supremum is taken over the portion of the
nontangential approach region contained in Ω \K)
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Our theorem yields nontrivial, new results even in the case when
Ω = Rn+. Availing ourselves of estimates for the Green function for a
system L in this setting (C.Martell/DM/I.Mitrea/M.Mitrea) our
theorem gives that if u satisfies

u ∈
[
C∞(Rn+)

]M
, Lu = 0 in Rn+,∫

Rn−1

(
Nκu

)
(x′)

dx′

1 + |x′|n−1
<∞,

then u
∣∣κ−n.t.

Rn−1 exists at Ln−1-a.e. point in Rn−1 and u has the Poisson
integral representation formula

u(x) =

∫
Rn−1

PLt (x′ − y′)
(
u
∣∣κ−n.t.

Rn−1

)
(y′) dy′ ∀x = (x′, t) ∈ Rn+,

where PL is the Agmon-Douglis-Nirenberg Poisson kernel for the
system L in Rn+ and PLt (x′) = t1−nPL(x′/t) for all x′ ∈ Rn−1, t > 0.
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Theorem ([MMM 2018])

Let Ω ⊆ Rn, n ≥ 2, be a bounded regular domain for the Dirichlet
problem for ∆. Suppose Ω is locally pathwise nontangentially
accessible, has a lower Ahlfors regular boundary, and σ = Hn−1b∂Ω
is a doubling measure on ∂Ω. Fix x0 ∈ Ω and κ > 0, and assume
that G, the Green function for the ∆ with pole at x0, satisfies

N ε
κ(∇G) ∈ L1(∂Ω, σ) for some ε ∈

(
0 , dist (x0, ∂Ω)

)
,

and (∇G)
∣∣∣κ−n.t.

∂Ω
exists at σ-a.e. point on ∂Ω.

Then ωx0, the harmonic measure on ∂Ω with pole at x0, is absolutely
continuous with respect to σ and

dωx0

dσ
= −1∂∗Ω · ∂νG at σ-a.e. point on ∂Ω,

where ν is the De Giorgi-Federer outward unit normal to Ω.
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Comments:

• Whenever ωx0 << σ, the Poisson kernel for Ω, defined as

kx0 :=
dωx0

dσ
belongs to L1(∂Ω, σ) (and satisfies

∫
∂Ω
kx0 dσ = 1). As

such, from the perspective of the conclusion we seek that
kx0 = −1∂∗Ω · ∂νG at σ-a.e. point on ∂Ω, the assumption
N ε
κ(∇G) ∈ L1(∂Ω, σ) is natural.

• If Ω is a UR domain then
(
∇GΩ(·, x0)

)∣∣κ−n.t.

∂Ω
exists at σ-a.e. point

on ∂Ω. This is a consequence of a more general Fatou type theorem
in UR domains [MMM2018]:

If Ω is a UR domain in Rn, u ∈ C∞(Ω), Lu = 0 in Ω,

Nκ(∇u) ∈ Lp(∂Ω, σ) for some κ > 0 and p ∈
(n− 1

n
,∞
)

, then(
∇u
)∣∣κ−n.t.

∂Ω
exists σ-a.e. on ∂Ω.
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Sketch of proof: Let f ∈ C0(∂Ω) and consider

u ∈ C∞(Ω) ∩ C0(Ω), ∆u = 0 in Ω, u
∣∣
∂Ω

= f.

Then u(x0) =

∫
∂Ω
f dωx0

while our Poisson Integral Representation Formula gives

u(x0) = −
∫
∂∗Ω

f (∂νG) dσ.

Now the arbitrariness of f ∈ C0(∂Ω) yields the desired conclusion,
i.e.,

dωx0

dσ
= −1∂∗Ω · ∂νG at σ-a.e. point on ∂Ω.
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