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u € C*(Q)
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k(x,y) is the Poisson kernel for the Laplacian for the unit ball.
Comments:

e Regarding the nature of k, we have k(z,y) = —0,(,)[G(x,y)|, where
G is the Green function for the Laplacian in 2; i.e., for each z € Q:

{ G(z,7) € CX(Q\ {2}) N Ljoe(2)
AyG(xay) = —0,(y), G(z, )lag =0



n . 1—|xf?
Let = B(0,1) C R™. Then if k(x,y) :=

—wn—1|ﬂf 7 for x # v,

ue CQ)

Au=0 in Q } = u(x) = mk(:p,y)(u‘ag)(y)da(y) Vo e

k(x,y) is the Poisson kernel for the Laplacian for the unit ball.
Comments:

e Regarding the nature of k, we have k(z,y) = —0,(,)[G(x,y)|, where
G is the Green function for the Laplacian in 2; i.e., for each z € Q:

{ G(‘T7 ) € Coo(ﬁ\ {LE}) N Llloc(Q)
AyG(z,y) = =0u(y),  Gla,)],q=0

dw
Alternatively, we may define k := — but then the question becomes

o
when is k(z,y) = —0,(,)[G(7,y)] (e.g., issue explicitly raised in
Garnett & Marshall Harmonic Measure [Question 2, page 49]).
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e In the proof of the Poisson formula, use the classical Divergence
Theorem in the bounded C* domain Q. := Q\ B(z,¢), € > 0 small,
where x € () is an arbitrary fixed point, for the divergence-free

vector field ~
F:=uVG - GVu € C1(Q)

and then take the limit as ¢ — 0. The assumption u € C?(Q) is
needed in the proof to ensure the regularity of F', but seems like an
overkill as far as the conclusion

u(z) = /a Gl () dr (1)

is concerned.



e In the proof of the Poisson formula, use the classical Divergence
Theorem in the bounded C* domain Q. := Q\ B(z,¢), € > 0 small,
where x € () is an arbitrary fixed point, for the divergence-free

vector field ~
F:=uVG - GVu € C1(Q)

and then take the limit as ¢ — 0. The assumption u € C?(Q) is
needed in the proof to ensure the regularity of F', but seems like an
overkill as far as the conclusion

u(x) = /a Gl () dr (1)

is concerned.

e In principle, the approach is robust and may be adapted to other
more general partial differential operators than the Laplacian.
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measure theory; from now on, o := H" ! |0 and the outward unit
normal v is the De Giorgi-Federer normal for sets of locally finite
perimeter (H ™! is the (n — 1)-dim. Hausdorff measure in R").
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e replace the Laplacian by general weakly elliptic homogeneous
constant complex coefficient second-order systems



Present Goal: Find geometric and analytic assumptions, in the
nature of “best possible”, ensuring the validity of the Poisson
integral representation formula

U= — /aQ 8V(y) {G(ay)](ulag)(y) do(y)
Specifically:

e the nature of 2 is best described in the language of geometric
measure theory; from now on, o := H" ! |0 and the outward unit
normal v is the De Giorgi-Federer normal for sets of locally finite
perimeter (H ™! is the (n — 1)-dim. Hausdorff measure in R").

e boundary traces taken in the nontangential approach sense

e replace the Laplacian by general weakly elliptic homogeneous
constant complex coefficient second-order systems

e impose minimal size and smoothness assumptions on the solution
u and Green function G
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Suppose 2 is an open subset of R" satisfying the following
properties:
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Suppose 2 is an open subset of R" satisfying the following
properties:

e 00 is lower Ahlfors-David regular, i.e., there exists ¢ € (0,00) such
that

crml <yl (B(z,r)NY) for each z € ¥ and r € (0,2diam (X)).

e 0 =H" 10N is a doubling measure on 9, i.e., there exists some
C > 1 such that 0 < o(B(z,2r) N 0Q) < Co(B(z,r) N 9Q) < +o0
for all x € 9 and r € (0,00).

Note: If 092 is both upper and lower Ahlfors-David regular then
automatically o is a doubling measure.



Fact: If o is locally finite then € is a set of locally finite perimeter.
As such, the De Giorgi-Federer unit normal v to ) exists and is
defined o-a.e. on the geometric measure theoretic boundary 0,2

"B Q
0,0 = {:c € R" : limsup £4(B(z,m) 0 Q) >0 and
r—0+ rn
LB Q
lim sup ( (ﬂc,nr)\ ) > 0},
r—0+ r

where L" is the Lebesgue measure in R".



Fact: If o is locally finite then €2 is a set of locally finite perimeter.
As such, the De Giorgi-Federer unit normal v to €2 exists and is
defined o-a.e. on the geometric measure theoretic boundary 0,2

"B Q
0.0 = {x € R" : limsup £4(B(z,m) 0 Q) >0 and
r—0+ rn
LB Q
lim sup ( (ﬂc,nr)\ ) > 0},
r—0+ r

where L£" is the Lebesgue measure in R". Fix x > 0 playing the role
of aperture parameter. For each x € 02 define the nontangential
approach region

Lo(z):={yeQ: |y—z| < (1+r)dist (y,00)}



e () is locally pathwise nontangentially accessible if £ is open and:

given any k£ > 0 there exist kK > x along with ¢ € [1,00) and
d > 0 such that o-a.e. point x € 02 has the property that any
y € I'x(z) with dist (y,0Q) < d may be joined by a rectifiable
curve 7, satisfying v, \ {#} C I'z(z) and whose length is
< clzr —y|.




The nontangential maximal operator with aperture x acts on any
measurable function u :  — C according to

(New) (@) := l|lull oo (r, @), @ € 0%,

and the nontangential boundary trace of u is defined as

k—n.t.

(ulpg )(@):= . (aggz . u(y),

whenever x € 0§ is such that = € T'y(z).



The nontangential maximal operator with aperture x acts on any
measurable function u : 2 — C according to

(New) (@) := l|lull oo (r, @), @ € 0%,

and the nontangential boundary trace of u is defined as

k—n.t.

(u|3Q )(I) = Fﬁ(gggl;—)x u(y),

whenever x € 0§ is such that = € T'y(z).

For p > 0 define the truncated nontangential maximal operator
(NVEu) () == [lull Lo (r@)no,),  © € 0L,
where O, := {y € Q : dist(y,00Q) < p}.
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Fix n, M € N, with n > 2. We work with a homogeneous M x M
second-order complex constant coefficient system in R" (with the
summation convention over repeated indices)

L= (“gsﬁafas)ga,ggM

which is weakly elliptic, i.e., its M x M symbol matrix

L(S) = (a’gsﬂgrgs)lgaﬂng V£ = (gr)lgrgn € Rna

satisfies

det[L(&)] #£0,  VEeR™\ {0}



Fix n, M € N, with n > 2. We work with a homogeneous M x M
second-order complex constant coefficient system in R" (with the
summation convention over repeated indices)

L= (agsﬁafas)ga,ﬁgM

which is weakly elliptic, i.e., its M x M symbol matrix

L(é.) = (a’gsﬂé.rgs)lgaﬁng V§ = (gr)lgrgn € Rna
satisfies
det[L(E)] £0, Y& R™\ {0},

Examples to keep in mind.
Scalar operators: L = a;j;,0;0 with a;, € C (e.g., the Laplacian).
Genuine systems: L = pA + (A + p)Vdiv with p, A € C (Lamé-like).



Consider the coefficient tensor

[0
A= (a2?) 1<r.s<n
1<a,3SM

where a?‘sﬁ € C. Its transposed is given by

AT = () 1zsirzn -
1<B,a<M
With each such A we may canonically associate a homogeneous
constant (complex) coefficient second-order M x M system L4 in R"™
which is expressed as

LA = (a?sﬁaras)ls(lSM
1<B<N.

In particular, (L4)" = L.
Note: Given a homogeneous second-order system L, there exist
infinitely many coefficient tensors A such that L = L 4.
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Let © be a set of locally finite perimeter in R™. Denote by

v = (Vy)1<r<n the De Giorgi-Federer outward unit normal to €2

(defined o-a.e. on 0,2). Let A = (aﬁ‘f ) 1<rs<n be a coefficient
1<a,B<M

tensor with complex entries. Also fix an aperture parameter x > 0.

Ifue [I/Vl(l)cl(Q)] M then the conormal derivative of u with respect to

the coefficient tensor A and the set Q is the CM-valued function

k—n.t.

at o-a.e. point on 0,2
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= (Vraff (Osup)

whenever meaningful.



Let © be a set of locally finite perimeter in R™. Denote by
v = (Vy)1<r<n the De Giorgi-Federer outward unit normal to €2

(defined o-a.e. on 0,2). Let A = (a?‘f) 1<rs<n be a coefficient
1<a,f<M
tensor with complex entries. Also fix an aperture parameter x > 0.

Ifue [I/Vl(l)cl(Q)] M then the conormal derivative of u with respect to
the coefficient tensor A and the set Q is the CM_valued function

k—n.t.

O = (yraff(ﬁsug)‘ag >1<a<M at o-a.e. point on 9,9,

whenever meaningful.

Note: Starting with a homogeneous second-order system L, for each
writing L = L4 there corresponds a typically distinct conormal
derivative 9.



Let Q C R™ be a bounded locally pathwise nontangentially accessible
set with a lower Ahlfors-David regular boundary and such that
o :=H""10Q is a doubling measure on 6Q.

Suppose L is a weakly elliptic, homogenous, constant complex
coefficient, second-order, M x M system in R".

Fiz an aperture parameter k > 0, along with an arbitrary point
xo € Q, and choose a truncation 0 < p < %dist (z9,00).

Then there exists some k > 0, which depends only on Q and k, with
the following significance.



Assume G is a matriz-valued function satisfying

( G e [Ll (Q)]MXM7

loc

L'G = —6,Ipxn in D'(Q),

R—n.t.
(VG) 0 erists at o-a.e. point on O,
K—n.t.
G =0 ato-a.e. point on OS2,
\ o0

and assume u is a CM —valued function satisfying

we [, Lu=0 in 9,

k—n.t.
u|6Q ezists at o-a.e. point on OS2,
mN,fu -NE(VG) do < +oo.



Then for any choice of a coefficient tensor A which permits writing
L as L4, one has the Poisson integral representation formula

= [ (" 0 G) a0

where v denotes the De Giorgi-Federer outward unit normal to €2
T

and 02 stands for the conormal derivative associated with AT

acting on the columns of the matriz-valued function G.
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A few examples when / NPu-N2(VG) do < 400 holds include,
o0

with p,q,p’,q" € [1,00] satisfy 1/p+1/p' =1=1/q¢+1/q’,

e Ordinary Lebesgue spaces: Nfu € LP(99Q,0) and
NEL(VG) e LP (09, 0)

e Muckenhoupt weighted Lebesgue spaces: Nfu € LP(99Q, wo) and
NP(VG) € LP (09Q, w'™P o), where w € A,(0Q, )

e Lorentz spaces: NPu € LP4(99Q,0) and N(VG) € LP"+7' (09, o)
e Morrey spaces and their pre-duals....

In particular, one immediately obtains uniqueness for the Dirichlet
problem in the corresponding settings.
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to apply to this vector field a suitable version of the Divergence
Theorem, much more potent than the classical one.
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Fix g € {1,..., M} and define the vector field

F = (uaa']z;’ 0kGyp— Gag a?,z 8ku7> ien a.e. in Q.
The strategy to prove the desired integral representation formula is
to apply to this vector field a suitable version of the Divergence
Theorem, much more potent than the classical one.
A word of caution: The classical Divergence Formula for bdd. C*
domains and C* vector fields on the closure fails hopelessly short,
and so does the De Giorgi-Federer version (involving sets of locally
finite perimeters but requiring the vector field to be C' with
compact support in the entire R").

Step I. From G € [\ {wo}) N Wi ()] and
ue [C®)]" it follows that

Fe [LL(o)]"
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Step II. Show that div F = —ug(xo) 0z, in D' ().
In the sense of distributions in €2, we have
div F= (djuq) L (OkGr ) + tia @) (001G 3)
—(0;Gy, ;)(z ) (Opuy) — Gmu ) (050kuy) =: I1 + Io + I3 + I4.
Changing variables j' =k, k' = j, o’ =, and v’ = « in I3 yields
Is = — (0, Gy 13 >”A/ ) (() M) = —1

while, Iy = —Gop (Lau)o = —Gap (Lu), = 0. In addition,

Is = uo(Ls7G .5)a = U (LG .5)0 = —Ua 0080z, = —Ug(Z0) Ogg-
Hence, in the sense of distributions in §2,

div F = —ug(0) 0z € E'(Q)
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div F= (0jua) al* (0kGy g) + ta ] (9;04G p)

—(8jGa5) ajk (aku,y) — Gag ajk (8j8ku,y) =1+ 1o+ I3+ I4.
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Step II. Show that div F' = —ug(xq) 8, in D'(Q).

In the sense of distributions in €2, we have
div F= (0jua) al* (0kGy g) + ta ] (9;04G p)
—(0;Gap) ajk (Okuy) — Gop aj,z (050kuy) =: Iy + Io + I3 + I4.
Changing variables j' =k, k' = j, a’ =, and v’ = a in I3 yields
~(0hGy ) al S (Ojruar) = —Iy
while, Iy = —Gog (Lau)q = —Gap (Lu)q = 0. In addition,
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Step II. Show that div F' = —ug(xq) 8, in D'(Q).

In the sense of distributions in €2, we have
div F= (0jua) al* (0kGy g) + ta ] (9;04G p)
—(0;Gap) ajk (Okuy) — Gop aj,z (050kuy) =: Iy + Io + I3 + I4.
Changing variables j' =k, k' = j, a’ =, and v’ = a in I3 yields
~(0hGy ) al S (Ojruar) = —Iy
while, Iy = —Gog (Lau)q = —Gap (Lu)q = 0. In addition,
I = ua(L TG .g)a = Ua(LT G .5)a = —Uabasdey = —us(T0) dap
Hence, in the sense of distributions in 2,

div F = —ug(z0) 6, € E'(Q)



Step III. Show that Fﬁ‘g;;t‘ exists at g-a.e. point on 0f2.
Recall that ﬁ = (Fj)lgjgn with
F} :uaazjaaka—Gaga?,jakuv, jed{l,...,n}

and that, by assumption,

—n.t. Kk—n.t.

and u‘aﬂ exist at o-a.e. point on 0.

(vG) m

Since Kk > K, the first piece in Fj is OK. We are left with proving
that

k—n.t.

(G Vu) 0

exists at o-a.e. point on 0f2.




Define the nontangentially accessible boundary of Q by
D, :={z €00 : z €Tx(x) for each x> 0}.

Fact: () locally pathwise nontangentially accessible set and o
doubling measure on 0f2 H" (00 D,.82) =0

Choose a suitable (dictated by geometry) k > x and set
z€0N: N°(VG)(z) = +oo or (G

Ny = {.1‘ €0.,..0: (1/‘(‘)” v

{.1‘ € 00 excluded in the locally pathwise n.t.a. (h*ﬁnitiun}.
Let N := N; U Ny U Ns.
Then the current assumptions ultimately imply o(/N) = 0.

c—n.t.

:')sz ) (@) # [)}'
)(z) fails to (‘xist}.

t.

Now fix x € 9,,,Q2\ N and pick with dgqa(y) := dist (y, 00Q)
. Let 7., be a rectifiable curve joining x and y
guaranteed to exist by the locally pathwise nontangential
accessibility of €.
~ D. Mitrea (MU) . 19/35
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Define the nontangentially accessible boundary of Q by

D, :={z €00 : z €Tx(x) for each x> 0}.

Fact: Q locally pathwise nontangentially accessible set and o
doubling measure on 90— H" ! (092\9,,.,Q) =0

Choose a suitable (dictated by geometry) & > x and set
Ny := {33 € 90 : N*°(VG)(z) = +o0 or (G‘;;' )(x) # 0}7
Ny = {:1: €0,.0: (u};;t)(x) fails to exist},

nta

N3 := {:L’ € 002 excluded in the locally pathwise n.t.a. deﬁnition}.
Let N := N; UNy U Nj3.
Then the current assumptions ultimately imply o(N) = 0.

Now fix x € 9,,,Q \ N and pick y € I';.(z) with dgq(y) := dist (y, 09Q)
sufficiently small. Let 7., be a rectifiable curve joining = and y
guaranteed to exist by the locally pathwise nontangential
accessibility of €.



R—n.t.

Since, by design, (G| 80 )(z) = 0, using the Fundamental Theorem
of Calculus, we may estimate

Go) =Gl = [ 6 (1) de

t=0 - 0 dt

! d
= [ (V&G0 - G ()]




R—n.t.

Since, by design, (G| 80 )(z) = 0, using the Fundamental Theorem
of Calculus, we may estimate

Go) =Gl = [ 6y 1)) at

t=0 - 0 dt

! d
= [ (V&G0 - G ()]

)

The choice of K implies 7., ((0,1]) C I'z(z) and the smallness of
doa(y) is tailored to ensure dist (74, 002) < p.
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Recall v,,((0,1]) C I'z(z) and dist (yzy, 9Q2) < p. In addition,
length(72y([0,1])) < clz — y| < e(1 + k)dist(y, 02) = Cdan(y).
As we have just seen, the Fundamental Theorem of Calculus gives

G) = [ (VG (ry(t)) - G im0

so we may further estimate

|G(y)| < NE(VG)(x) - length (7. ([0,1]))
<NEZ(VG)(x)-C - daaly)

rate of vanishing



Using interior estimates in B(y, a- 659(3/)) with a > 0 small for
w(z) == u(z) — (u‘;;;.t') (x), z € 2, which is a null-solution for L,

K—n.t.
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Using interior estimates in B(y, a- 559(3/)) with a > 0 small for

w(z) = u(z) — (u‘;;.t') (x), z € Q, which is a null-solution for L,
(Vo)) = (Vo)) < 5 f u(z) = (ulyy ) (@) d
_ < — 2
000(Y) ) By.assa(y)) o0

K—n.t.
<Coom - sw ) - () @)
N———— z€lk, (z)

blow up rate |g—z|<(14-c¢)dp0 (y)

for some k, > 0 big. Unfortunately k, > &, so we loose control!

%(x)




Using interior estimates in B(y, a- 539(3/)) with a > 0 small for

w(z) = u(z) — (u‘;;.t') (x), z € 2, which is a null-solution for L,
(Vo)) = (Vo)) < 5 f u(z) = (ulyy ) (@) d
_ < — 2
000(Y) ) By.assa(y)) o0

K—n.t.
<Coa s [ = (g ) @)
N———— z€lk, (z)

blow up rate |z—z|<(1+c)daq (y)

for some k, > 0 big. Unfortunately k, > &, so we loose control!

%(x)

Remedy:

start with y € T'ys () for suitable x’ < x to end up with z € T (z).
'~ D. Mitrea (MU) S 22/35



Hence matters can be arranged so that

(V@I <C- Foaly) - sup  Ju(z) = (ulpg ) (@)].
~—— z€lg ()
blow up rate |z—2z|<(14¢)ds0 (V)



Hence matters can be arranged so that

(VW <C- Fooly) ™ - s u(z) = (ulpg (@),
~—— z€lg ()
blow up rate |z—2z|<(14¢)ds0 (V)

When combined with the earlier estimate on G, namely

Gyl <C- doaly) -NE(VG)(2),
ishi t
vanishing rate

this yields

GOV <CNETO @) s [ula) — (ulyg ) @)
j—2I<(1+e)5aa ()

qualitative vanishing rate

Consequently,
lim  |G(y)|[(Vu)(y)| =0 for each z €0, ,Q2\N.

'k (z)dy—a



— k—n.t.

Hence F‘ 5o  exists at all points in 9, Q\ N.

Since o (02 \ (9,,,2\ N)) = 0, this nontangential trace exists at

o-a.e. point on 02 and, in fact

— ront. R—n.t.

Fl = ((ualye )aly (@:G5)l,

>1Sj§n'

Step I'V. Show that there exists some g > 0 such that

NEOF € LY (09, 0).



e Choose ¢g < p sufficiently small and fix z € 0_, Q. For each
y € I'x(z) with dpa(y) < o use interior estimates for u

C

e Y SN LI

< Copaly)~"- SUIZ : [u(2)] < Cdaaly) " (NPu) ().
zels (x
|z—2|<(1+c)doq(y)



e Choose ¢g < p sufficiently small and fix z € 0_, Q. For each
y € I'x(z) with dpa(y) < o use interior estimates for u

C

(Vo< ][B(ym(y»|u<z>| dz

< Copa(y) ™" B u(2)| < Cdoaly) " (Nfu) ().
z€l'k(x
|z—z|<(14-c)daa(y)

e Recall the earlier estimate |G(y)| < Cdpa(y) -NE(VG)(x).



e Choose ¢g < p sufficiently small and fix z € 0_, Q. For each
y € I'x(z) with dpa(y) < o use interior estimates for u

C

(Vo< J[B(y,a.539<y>>'“<z)' dz

< Copa(y) ™" B u(2)| < Cdoaly) " (Nfu) ().
z€l'k(x
|z—z|<(14-c)daa(y)

e Recall the earlier estimate |G(y)| < Cdpa(y) -NE(VG)(x).
e Hence N,2°(|G||Vu|) < CNE(VG) - Nfu at o-a.e. point on 992



e Choose ¢g < p sufficiently small and fix z € 0_, Q. For each
y € I'x(z) with dpa(y) < o use interior estimates for u

¢ ][ lu(z)| dz
600(Y) ) B(y.abon(w))

< Copaly) " B u(2)] < Cdoaly) " (NPu)(x).
z€lk(x
|z—2|<(1+c)doq(y)

[(Vu)(y)|<

e Recall the earlier estimate |G(y)| < Cdpa(y) -NE(VG)(x).
e Hence N,2°(|G||Vu|) < CNE(VG) - Nfu at o-a.e. point on 992

e Also, NJ°(|VGlu|) S N°(VG) - NFou < NE(VG) - Nfu at each
point on 0f).



e Choose ¢g < p sufficiently small and fix z € 0_, Q. For each
y € I'x(z) with dpa(y) < o use interior estimates for u

¢ ][ lu(z)| dz
600(Y) ) B(y.abon(w))

< Copaly) " B u(2)] < Cdoaly) " (NPu)(x).
z€lk(x
|z—2|<(1+c)doq(y)

[(Vu)(y)|<

e Recall the earlier estimate |G(y)| < Cdpa(y) -NE(VG)(x).

e Hence N,2°(|G||Vu|) < CNE(VG) - Nfu at o-a.e. point on 992

e Also, NJ°(|VGlu|) S N°(VG) - NFou < NE(VG) - Nfu at each
point on 0f).

Since by assumption N/u - NZ(VG) € L'(9Q, o), it follows that
NEOF € LY09, 0).



In summary, for the current choice of F we have proved
Fe [LL ()], divF = —ug(zo) 6 € E'(Q),
NOF € LN09Q,0)  for some g9 > 0,

— Kk—n.t.
F‘aQ exists at o-a.e. point on 0f) and

won.t. R—n.t.

— ((nalpn el (06656,

—

a0 >1§j§n'



In summary, for the current choice of F we have proved
Fe [LL ()], divF = —ug(zo) 6 € E'(Q),
NOF € L0, 0)  for some g > 0,

—, k—n.t.

F‘aﬂ exists at o-a.e. point on 0f) and
Lt K—n.t. F—n.t.
F s <(u0‘}69 )aZja(akaﬁ”a >1§j§n'

Step V. Apply the Divergence Theorem (to be stated next):

—  k—n.t.

—ug(zg) = (O @) (divﬁ, 1)0600(9) = /a QV- (F ‘89 ) do

R—n.t.

:/Q(“algs_]n.')Vjagja(akaﬁ)‘aQ do

— /a . <u};;t , 3fTG.g> do,

v = (vj); being the De Giorgi-Federer outward unit normal to 2.



..
Cyo(Q) == {f € C®(Q) : f bounded in Q}
A sequence {f;}jen C Cp°(82) to f € Cp°(§2) provided
supsup | fj(x)| < 400

jeN zeQ
V compact K C 2 Jjg € Nsuch that f; = f on K if j > jk.

Let (('X( )) denote the of this linear space, so that
\,-HI\LL (Cse ()" (A, f )(',}(sz) ~ (Cr@)” (A, f)(,x Q)

whenever A € ((,'];%(SZ)Y: and lim f; = f in C;°(Q)
j—roc
o If u € D'(Q) and exist A, € (C3°(2))” then this extension is
unique.
° Ifu=w+g, we(Q),gel(Q),
then A, € (C,‘)X‘(QD* where
(o)) (Aus ,/))(;hx,(m = gr){w, few) + /) fgdLl™, Y feCr(Q)



Cyo(Q) == {f € C®(Q) : f bounded in Q}
A sequence {f;}jen C C;°(2) converges to f € C;°(£2) provided
sup sup |f; ()] < +o0

JEN z€Q
V compact K C ) djg € Nsuch that f; = f on K if j > jk.



Cpo(Q) :={f € C™(Q) : f bounded in O}
A sequence {f;}jen C C;°(2) converges to f € C;°(£2) provided

supsup\fg( )| < +o0
jeEN zeQ

V compact K C ) djg € Nsuch that f; = f on K if j > jk.
Let (C;°(€2))" denote the algebraic dual of this linear space, so that

lim (c,ng(sz))*(A, fj)cgom) = (C,;x’(Q))*(A’ f)c;;om)

j—00
whenever A € (C;°(Q))" and lim f; = f in C3°(Q)
j—o0

*



Cpo(Q) :={f € C™(Q) : f bounded in O}
A sequence {f;}jen C C;°(2) converges to f € C;°(£2) provided
sup sup |f; ()] < +o0

JEN zeQ
V compact K C ) djg € Nsuch that f; = f on K if j > jk.

Let (C;°(€2))" denote the algebraic dual of this linear space, so that

lim (c,;w(sz))*(A, fj)cgom) = (C,;x’(Q))*(A’ f)ch(Q)

J]—00

whenever A € (C;°())" and lim f; = f in C3°(Q)
J—00

o If u € D'(Q) and exist A, € (C;°(€2))" then this extension is
unique.



Cpo(Q) :={f € C™(Q) : f bounded in O}
A sequence {f;}jen C C;°(2) converges to f € C;°(£2) provided

supsup\fg( )| < +o0
JEN zeQ

V compact K C ) djg € Nsuch that f; = f on K if j > jk.
Let (C;°(€2))" denote the algebraic dual of this linear space, so that

lim (c,;w(sz))*(A, fj)cgom) = (C,;x’(Q))*(A’ f)ch(Q)

J]—00

whenever A € (C;°())" and lim f; = f in C3°(Q)
J—00

o If u € D'(Q) and exist A, € (C;°(€2))" then this extension is
unique.

¢ &'(Q)+ L) C (C3°()”



Cpo(Q) :={f € C™(Q) : f bounded in O}
A sequence {f;}jen C C;°(2) converges to f € C;°(£2) provided
sup sup |f; ()] < +o0

JEN zeQ
V compact K C ) djg € Nsuch that f; = f on K if j > jk.

Let (C;°(€2))" denote the algebraic dual of this linear space, so that

lim (Cgo ()" (A, fj)cgom) = (0,30(9))*(/\’ f)ch(Q)

J]—00

whenever A € (C;°())" and lim f; = f in C3°(Q)
j—00

o If u € D'(Q) and exist A, € (C;°(€2))" then this extension is
unique.

¢ &'(Q)+ L) C(C3P(Q) fu=w+g, weE(Q), ge LY(Q),
then A, € (C3°())" where

(Ce ()" (Auaf)cgo(g) = 5’(Q)<w7f>S(Q) +/Qfgd£na vf € CI())O(Q)



Let  C R™ be bounded, open, with a lower Ahlfors-David reqular
boundary, such that o = H" 1 |09 is a doubling measure on OS).
Let v be the De Giorgi-Federer outward unit normal to ). Fizx k > 0
and assume

Fe ')+ L))" c [D')]"
is a vector field satisfying (for some 0 < & < dist (regsuppﬁ, 00))

— k—n.t.

NEF € LY09Q, 0), F‘BQ exists o-a.e. on 0. S, and

div F € D'(Q) extends to a continuous functional in (C{°(Q))* .

ok —n.t.
Then for any ' > 0 the trace F | oq  cmists o-a.e. on 0,8 and

— k—n.t.
agrees with F ‘ o  and, with the dependence on aperture dropped,

— n.t.

(ch(Q))*(diVﬁa 1)(;;0(9) - /& 0 (F'|oq) do
~ D. Mitrea (MU) - 28/35



Sharpness aspect of our Divergence Theorem: Let () be the
slit unit ball in R"
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Sharpness aspect of our Divergence Theorem: Let () be the
slit unit ball in R"

Q

o

Then 9Q = S" LU {(/,0) : |2/| <1}, 9,.Q = ",
Ontal = O\ {(2/,0) : |2/| =1} = 0uta2\ Q2 = {(2/,0) : |2'| < 1}
Also let {

—

+e, in QN Rﬁ,

—e, in QNR".

Observe that F € [Co()]", divF =0in Q,
N F € L™(09,0) C LY (89, 0) for all k> 0,

F‘aﬂ = +e, at every point on Sl_l =58""1n R’ . In particular,

the nontangential trace of F exists o-a.e. on 0582,

— k—n.t.

however F}aQ does not exist at any point on {(2’,0) : |2/] < 1}.



Hence, on the one hand we have

/ U (ﬁ‘g;t> da:/ veoe,dH" ! —/ veoe,dH" !
8.Q st st

_ 2/ en - en dH" 1 = 21" ({|2'] < 1)) £0,
lz'|<1



Hence, on the one hand we have

/ U (F";;t> da:/ veoe,dH" ! —/ veoe,dH" !
8.Q st st

_ 2/ en - en dH" 1 = 21" ({|2'] < 1)) £0,
lz'|<1

while on the other hand, / div FdL" = 0.
Q



Hence, on the one hand we have

/ V.(ﬁ\gﬂ"'“)da:/ V-endH"I—/ veendi"
8.9 st Rl

= 2/ e, e, dH" 1 =21 " ({|2/| < 1}) #0,
lz'|<1

while on the other hand, / div FdL™ = 0.
Q

Conclusion: The demand that F ];Qn't' exists o-a.e. on 0 ,,€) and not
just on the (potentially smaller) set 0,2 is necessary, even though
it is 9, which appears in the very formulation of the Divergence
Formula.



Our Poisson Integral Representation Formula also holds for €2
unbounded under appropriate decay conditions.
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e If Q) is an exterior domain, i.e., € is the complement of a compact
subset of R, we also ask that

G(z) = o(1) and u(z) = o(1) as |z| — oo.



Our Poisson Integral Representation Formula also holds for €2
unbounded under appropriate decay conditions.

e If Q) is an exterior domain, i.e., € is the complement of a compact
subset of R, we also ask that

G(z) = o(1) and u(z) = o(1) as |z| — oo.

o If 00 is unbounded, we make the additional assumption

Nouw - NWEG do < +oo where K := B(x, p),
89

(here N, KQ\K denotes the nontangential maximal operator in which
the essential supremum is taken over the portion of the
nontangential approach region contained in 2\ K)



Our theorem yields nontrivial, new results even in the case when

0 =R7Y. Availing ourselves of estimates for the Green function for a
system L in this setting (C.Martell/DM/I.Mitrea/M.Mitrea) our
theorem gives that if u satisfies

u € [(YX'(R"} )]\[. Lu=0 in R,

' . \ Iz’
/ (Vo) (@) — P <o,
B ﬂ:‘im—]

] + "1‘/‘1171

Kk—n.t.
then 1/|M7‘ at £ l-a.e. point in R" ! and u

n.t.

u(x) = / 1’,[‘(.1'/ — ,1/)(1/‘2,,,,I )(,1/) dy/ Vo= (2 t) € RY,
JRn—1

where Pl is the Agmon-Douglis-Nirenberg Poisson kernel for the
system L in R? and PF(z') = /7" P*(2//t) for all 2/ € R"™!, ¢ > 0.
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Our theorem yields nontrivial, new results even in the case when

() = R, Availing ourselves of estimates for the Green function for a
system L in this setting (C.Martell/DM/I.Mitrea/M.Mitrea) our
theorem gives that if u satisfies

u € [COO(R:LL)]M, Lu=0 in R,
, dx’
/Rnl (Nu)(2) TF ot < 00,

K—n.t.
then u‘Rn,l exists at £ -a.e. point in R™ ! and u has the Poisson
integral representation formula
K—n.t.
u(z) = ) PtL(x' - (u‘]Rn,1 )(y') dy’ Vo= (a,t) e RY,
R7—

where P¥ is the Agmon-Douglis-Nirenberg Poisson kernel for the
system L in R and PF(2') = ' " P*(2'/t) for all 2’ e R", ¢ > 0.



Let Q CR™, n > 2, be a bounded reqular domain for the Dirichlet
problem for A. Suppose ) is locally pathwise nontangentially
accessible, has a lower Ahlfors reqular boundary, and o = H"™ 1|90
is a doubling measure on 0. Fix xg € Q and k > 0, and assume
that G, the Green function for the A with pole at xq, satisfies

NE(VG) € LY99Q,0) for some ¢ € (0, dist (w9, 09)),

and (VG) 0 exists at o-a.e. point on OS).



Let Q CR"™, n > 2, be a bounded reqular domain for the Dirichlet
problem for A. Suppose ) is locally pathwise nontangentially
accessible, has a lower Ahlfors reqular boundary, and o = H"™ 1|00
is a doubling measure on 0S). Fix xg € Q and k > 0, and assume
that G, the Green function for the A with pole at xq, satisfies

NE(VG) € LY99Q,0) for some ¢ € (0, dist (w9, 09)),

and (VG) 0 exists at o-a.e. point on OS).

Then w*™®, the harmonic measure on 0} with pole at xq, is absolutely
continuous with respect to o and

dw*®o
o = —15,0-0,G at o-a.e. point on 0L2,
o

where v is the De Giorgi-Federer outward unit normal to 2.
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Comments:
e Whenever , the Poisson kernel for €2, defined as
A dw™® o .
k*0 = (and satisfies / k¥ do =1). As
do JoQ

such, from the perspective of the conclusion we seek that
k™ = -1y q - 0,G at g-a.e. point on 0f2, the assumption

NE(VG) € LY 09, 0)

K—n.t.

eIfNisa domain then (VGQ(-, .I'U)) 59
on 0f2. This is a consequence of a more general Fatou type theorem

in UR domains [MMM2018]:
If Q is a UR domain in R", u € C*°(Q2), Lu = 0 in €,
. o n—1
N (Vu) € LP(09,0) for some £ > 0 and p € (L x). then

exists at o-a.e. point

n.t.

(VU) |:)Q exists o-a.e. on JS).



Comments:
e Whenever w™ << o, the Poisson kernel for €2, defined as
o
kY0 = belongs to L'(9Q, o) (and satisfies / E*do =1). As

[2/9)
such, from the perspective of the conclusion we seek that
k* = -1y, - 0,G at o-a.e. point on 0f), the assumption
NE(VG) € LYH09Q,0) is natural.




Comments:

e Whenever w™ << o, the Poisson kernel for €2, defined as
o

d
E*o .= 2) belongs to L'(9Q, o) (and satisfies / k¥ do =1). As
o)
such, from the perspective of the conclusion we seek that
k* = -1y, - 0,G at o-a.e. point on 0f), the assumption
NE(VG) € LY09Q, o) is natural.

e If Q is a UR domain then (VGq(-, z0)) ‘g;'t' exists at o-a.e. point
on 0f). This is a consequence of a more general Fatou type theorem
in UR domains [MMM2018]:

If Qis a UR domain in R", v € C*(Q2), Lu = 0 in €,
—1
N, (Vu) € LP(09, o) for some £ > 0 and p € (T oo) then

K—n.t.

( )‘89 exists o-a.e. on 0f2.



Sketch of proof: Let f € C°(9Q) and consider

weC®(QNC'(Q), Au=0 in Q uly,=f

Then u(xp) = / fdw™

o0



Sketch of proof: Let f € C°(9Q) and consider

weC®(QNC'(Q), Au=0 in Q uly,=f

Then u(xp) = / fdw™

Q
while our Poisson Integral Representation Formula gives

u(zo) = — f(0,G)do.
0+82

Now the arbitrariness of f € C°(99Q) yields the desired conclusion,

ie.,
dw™

do

= -1y, 0,G at og-a.e. point on 0.



