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Notation and Definitions

Let x = (x1, . . . , xn) denote a point in Euclidean n space, Rn, n ≥ 2,
with norm, |x |. Put

B(z, ρ) = {y = (y1, . . . , yn) ∈ Rn : |z−y | < ρ} whenever z ∈ Rn, ρ > 0,

and let 〈·, ·〉 denote the inner product on Rn. Set
Sn−1 = {x ∈ Rn : |x | = 1}, and let dx denote Lebesgue n-measure on
Rn. If O ⊂ Rn is open and 1 ≤ q <∞, then by W 1,q(O) we denote the
space of equivalence classes of functions h with distributional gradient
∇h = (hx1 , . . . ,hxn ), both of which are q th power integrable on O. Let
‖h‖1,q = ‖h‖q + ‖ |∇h| ‖q be the norm in W 1,q(O) where ‖ · ‖q denotes
the usual Lebesgue q norm in O. Next let C∞0 (O) be the set of
infinitely differentiable functions with compact support in O and let
W 1,q

0 (O) be the closure of C∞0 (O) in the norm of W 1,q(O). Let
Hλ, λ > 0, denote λ dimensional Hausdorff measure on Rn.
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For fixed p > 1, δ ∈ (0,1), introduce vector fields
A = (A1, . . . ,An) : Rn \ {0} → Rn of p Laplace type satisfying:
A = A(η) has continuous partial derivatives in ηk ,1 ≤ k ≤ n, and
whenever ξ ∈ Rn, η ∈ Rn \ {0}:

(i) δ|η|p−2|ξ|2 ≤
n∑

i,j=1

∂Ai

∂ηj
(η)ξiξj and

n∑
i=1

|∇Ai(η)| ≤ δ−1|η|p−2 (1)

(ii) A(η) = |η|p−1A(η/|η|).

We say that u is A-harmonic in an open set O provided u ∈W 1,p(G)
for each open G with Ḡ ⊂ O and∫

〈A(∇u(y)),∇θ(y)〉dy = 0 whenever θ ∈W 1,p
0 (G). (2)

As a short notation for (2) we write ∇ · A(∇u) = 0.
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An important special case for us is when

∂Ai(η)

∂ηj
=
∂Aj(η)

∂ηi
for all η ∈ Rn \ {0} and 1 ≤ i , j ≤ n.

Equivalently, for some f ∈ C2(Rn \ {0}), homogeneous of degree p :

A(η) = Df (η) =

(
∂f
∂η1

,
∂f
∂η2

, . . . ,
∂f
∂ηn

)
. (3)

If f (η) = p−1|η|p in (3), then (2) becomes ∇ · (|∇u|p−2∇u) = 0
(the so called p Laplace equation).

Observe that solutions remain solutions under translation and
dilation but not necessarily under rotations. Also v = 1− u is a solution
to ∇ · Ã(∇v) = 0, where Ã(η) = Ã(−η).

Let E ⊂ Rn, n ≥ 2, be a compact convex set and let Ω = Rn \ E .
Using results in Heinonen, Kilpelainen, Martio, Nonlinear Potential
Theory of Degenerate Elliptic Equations, Dover Publications, 2006, as
well as Sobolev type limiting arguments, one can show that given
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p,1 < p < n, there exists a unique continuous function u,0 < u ≤ 1,
on Rn satisfying

(a) u is A− harmonic in Ω,

(b) u ≡ 1 on E , (4)

(c) |∇u| ∈ Lp(Rn) and u ∈ Lp∗
(Rn) for p∗ =

np
n − p

.

if and only if Hn−p(E) =∞. We put

CapA(E) =

∫
Ω
〈A(∇u),∇u〉dy

and call CapA(E), the A−capacity of E while u is the A− capacitary
function corresponding to E in Ω. We note that this definition is a slight
extension of the usual definition of “capacity ”. However in case,

A(η) = p−1Df (η) on Rn \ {0}

then using p homogeneity of f and Euler’s formula one gets the usual
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definition of capacity relative to f . That is,

CapA(E) = inf
{∫

Rn
f (∇ψ(y))dy : ψ ∈ C∞0 (Rn) with ψ ≥ 1 on E

}
.

If f (η) = p−1|η|p one obtains the so called p capacity of E , denoted
Capp(E). From the structure assumptions on A in (1) (i) it follows that

c−1Capp(E) ≤ CapA(E) ≤ c Capp(E) (5)

From uniqueness of u in (4) we note for z ∈ Rn, ρ > 0, that if
Ẽ = ρE + z, then

(a′) CapA(ρE + z) = ρn−p CapA(E),

(b′) ũ(x) = u((x − z)/ρ), x ∈ Rn \ Ẽ , is the A−capacitary function for Ẽ .
(6)
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So for example, if z ∈ Rn,R > 0,

CapA(B(z,R)) = c1Rn−p where c1 depends only on p,n, δ.

On a Minkowski Type Problem for Nonlinear Capacitary Functions

Let E ⊂ Rn be a compact convex set with nonempty interior. Then for
almost every x ∈ ∂E , with respect to Hn−1 measure, there is a well
defined outer unit normal, g(x) to ∂E . The function g : ∂E→Sn−1

(whenever defined), is called the Gauss map for ∂E .

.
The problem originally considered by Minkowski states:
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Given a positive finite Borel measure µ on Sn−1 satisfying

(i)
∫
Sn−1
|〈θ, ζ〉|dµ(ζ) > 0 for all θ ∈ Sn−1,

(ii)
∫
Sn−1

ζ dµ(ζ) = 0,

(7)

show there exists up to translation a unique compact convex set E with
nonempty interior and

Hn−1(g−1(β)) = µ(β) whenever β ⊂ Sn−1 is a Borel set. (8)

Minkowski, in Volumen und Oberfläche, Math. Ann. 57 (1903), no. 4,
447–495 proved existence and uniqueness of E when µ is discrete or
has a continuous density. The general case was treated by Alexandrov
in On the theory of mixed volumes. III. Extension of two theorems of
Minkowski on convex polyhedra to arbitrary convex bodies, Mat. Sb.
(N.S.), 3 (1938), 27-46. and On the surface area measure of convex
bodies, Mat. Sb. (N.S.), 6 (1939), 167-174.
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Similar results were obtained by Fenchel and Jessen in
Mengenfunktionen und konvexe Körper, Danske Vid. Selsk, Mat.-Fys.
Medd. 16 (1938), 1-31.

Jerison in A Minkowski problem for electrostatic capacity, Acta
Mathematica, 175 (1996), no. 1, 1–47
considered the following problem: Given E ⊂ Rn,n ≥ 3, a compact
convex set with nonempty interior let u be the Newtonian or 2
capacitary function for E . Then u is harmonic in Ω = Rn \ E and from
work of Dahlberg in
Estimates of harmonic measure, Arch. Rational Mech. Anal., 65
(1977), no. 3, 275–288, it follows that for Hn−1 every x ∈ ∂E ,

lim
y→x

∇u(y) = ∇u(x) = |∇u(x)| ν(x) nontangentially (9)

where ν(x) is the unit inner normal to E . Also,∫
∂E
|∇u|2dHn−1 <∞.
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If µ is a positive finite Borel measure on Sn−1 satisfying (7) then it was
shown by Jerision that there exists E a compact convex set having
nonempty interior and corresponding Newtonian capacitary function u
with ∫

g−1(β)
|∇u|2(x) dHn−1x = µ(β) (10)

whenever β ⊂ Sn−1 is a Borel set and n ≥ 4 . If n = 3, there exists a
compact convex set E and b ∈ (0,∞) for which (10) holds with µ
replaced by b−1µ. Moreover he used the Hadamard Variational
Formula and the case of equality for Newtonian capacity in a Brunn -
Minkowski inequality to show that if n ≥ 4, then E is the unique set up
to translation for which (10) holds, whereas if n = 3, then b is unique
and E also is unique up to translation and dilation. Jerison’s result was
generalized by Colesanti, Nyström, Salani, Xiao, Yang, and Zhang
(abbreviated CNSXYZ from now on) in
The Hadamard variational formula and the Minkowski problem for
p-capacity, Adv. Math. 285 (2015), 1511–1588
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To state their result, let E be a compact convex set with nonempty
interior, p fixed, 1 < p < n, and let u be the p capacitary function for E .
Then from results of Lewis and Nyström in Boundary behaviour for p
harmonic functions in Lipschitz and starlike Lipschitz ring domains,
Ann. Sci. École Norm. Sup. (4), 40 (2007), no. 5, 765-813 it follows
that (9) holds for u and ∫

∂E
|∇u|pdHn−1 <∞.

The authors show that if µ is a positive finite Borel measure on Sn−1

having no antipodal point masses (i.e , it is not true that
0 < min{µ({x}), µ({−x})} for some x ∈ Sn−1) and if (7) holds, then for
1 < p < 2, there exists E a compact convex set with nonempty interior
and corresponding p capacitary function u with∫

g−1(β)
|∇u|p(x) dHn−1x = µ(β) (11)

whenever β ⊂ Sn−1 is a Borel set.
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Moreover assuming the existence of an E for which (11) holds when p
is fixed, 1 < p < n, these authors use the case of equality in the Brunn
Minkowski inequality for p capacities to show that E is unique up to
translation when p 6= n − 1 and unique up to translation and dilation
when p = n − 1.
Murat Akman, Jasun Gong, Jay Hineman, John Lewis, Andy Vogel
(abbreviated AGHLV) have considered an analogous problem for
A = ∇f capacities in
The Brunn Minkowski problem and a Minkowski Problem for Nonlinear
Capacities, submitted in September 2017 (see arxiv:1709.00447 for a
preprint).
We prove the following theorem.
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Theorem 1
Let µ be a positive finite Borel measure on Sn−1 satisfying (7). Fix
p,1 < p < n, and let A = ∇f be as in (3). If p 6= n − 1, there exists a
compact convex set E with nonempty interior and corresponding A
capacitary function u satisfying

(a) (9) holds for u and
∫
∂E

f (∇u) dHn−1 <∞.

(b)

∫
g−1(β)

f (∇u) dHn−1 = µ(β) whenever β ⊂ Sn−1 is a Borel set.

(c) E is the unique set up to translation for which (b) holds .
(12)
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*
If p = n − 1 then there exists a compact convex set E with nonempty
interior, a constant b ∈ (0,∞) and corresponding A-capacitary
function u satisfying (9) and

(d) b
∫

g−1(K )
f (∇u) dHn−1 = µ(K ) whenever K ⊂ Sn−1 is Borel.

(e) E is the unique set up to translation and dilation satisfying (d)

Comments on the Proof of Theorem 1

As a broad outline of the proof in AGHLV we follow CNSXYZ (who in
turn used many ideas from Jerison). However, several important
arguments in this paper used results from Lewis - Nyström in various
papers concerning p harmonic functions vanishing on the boundary of
a Lipschitz domain. Thus we first needed to extend these arguments to
A = ∇f harmonic functions, vanishing on a portion of the boundary
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of a Lipschitz domain. Following Jerison or CNSXYZ we used these
results to first derive a Hadamard variational formula for A = ∇f
capacitary functions in smooth convex domains and then taking limits
show this formula holds in arbitrary convex domains with nonempty
interior.

After we have proved all these results we consider a minimum
problem similar to the one considered in Jerisons paper and CNSXYZ.
However unlike CNSXYZ we are able to show that compact convex
sets of dimension k ≤ n − 1 (so with empty interior) cannot be a
solution to our minimum problem. To rule out these possibilities we use
arguments from Lewis and Nyström in Quasi-linear PDE and
low-dimensional sets, to appear in Jems, when k < n − 1 while if
k = n − 1 we use an argument of Venouziou and Verchota in
The mixed problem for harmonic functions in polyhedra of R3 ,
Perspectives in partial differential equations, harmonic analysis and
applications, Proc. Sympos. Pure Math.,79 (2008), Amer. Math. Soc.
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Work in Progress

Let E be a compact convex set with nonempty interior and u the
corresponding capacitary function for Newtonian capacity. Let µ be the
measure on Sn−1 corresponding to u in (10). Then Jerison in the paper
mentioned earlier also showed that if

dµ = τdHn−1 where τ > 0 ∈ Ck ,β(Sn−1), β ∈ (0,1), k = 0,1,2, . . .
(13)

then Ω is Ck+2,β. CNSXYZ generalized this result to the p capacitary
setting when 1 < p < 2. Both papers make important use of estimates
for solutions with vanishing boundary values to their PDE’s in cones.
This led us (Murat Akman, myself, and Andrew Vogel) to investigate
what we now call
An Eigenvalue Problem for Nonlinear PDE of p Laplace type.
To discuss this problem given x ∈ Rn \ {0} introduce spherical
coordinates r = |x |, x1 = r cos θ,0 ≤ θ ≤ π and put
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K (α) = {x ∈ Rn : r > 0,0 < θ < α}, α ∈ (0, π].
Fix p,1 < p <∞, α ∈ (0, π] and let u > 0 be A harmonic in K (α) with
continuous boundary value 0 on ∂K (α) and u(1,0 . . . ,0) = 1. Using
arguments from Lewis, Lundström, and Nyström in
Boundary Harnack Inequalities for Operators of p Laplace Type in
Reifenberg Flat Domains, Proceedings of Symposia in Pure
Mathematics 79 (2008), 229-266,
one can show that If p ∈ (1,∞) and α ∈ (0, π), then u exists, is unique,
and of the form

u(x) = rλ φ(θ), r > 0, 0 ≤ θ < α, with φ(0) = 1, φ(α) = 0 (14)

where λ ∈ (0,∞). This statement is also true for α = π if n − 1 < p.
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Results of this type were first obtained for the p Laplace equation by
Krol’ and Maz’ya in On the abscence of continuity and Hölder
continuity of solutions of quasilinear elliptic equations near a
nonregular boundary, Trans. Moscow Math. Soc. 26 (1972), 73 - 93.
For existence they required 1 < p < n − 1 and α ∈ (0, π), near enough
π. Tolksdorf in
On the Dirichlet problem for quasilinear elliptic equations in domains
with conical boundary points, Comm. Partial Differential Equations 8
(1983), 773-817 extended these results (again for the p Laplace
equation) to α ∈ (0, π) and 1 < p <∞. Also in
Separable p-harmonic functions in a cone and related quasilinear
equations on manifolds, JEMS 11 (2009), 1285-1305.
Porretta and Veron gave another proof of Tolksdorf’s result and also
considered a related Martin boundary problem. For existence and
uniqueness of p harmonic functions u as in (14) in more general
Lipschitz cones see Veron and Gkikas:
The spherical p− harmonic eigenvalue problem in non smooth
domains, Journal of Functional Analysis, in Press
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For possible application to the smoothness problem involving µ in (13),
we were mainly interested in finding λ = λ(π) when α = π,p > n − 1.
To outline our efforts we assume for the moment in (14) that u is p
harmonic in K (α). Then a natural way to attack this problem is to use
the p Laplace equation, (14), and hopefully separation of variables to
get a differential equation for φ. This was done by Krol’ in
On the behavior of the solutions of a quasilinear equation near null
salient points of the boundary Proc. Steklov Inst. Math. 125 (1973)
130-136, who first obtained

0 = d
dθ

{
[λ2φ2(θ) + (φ′)2(θ)](p−2)/2 φ′(θ) (sin θ)n−2}+

λ[λ(p − 1) + (n − p)][λ2φ2(θ) + (φ′)2(θ)](p−2)/2φ(θ)(sin θ)n−2

Second letting ψ = φ′/φ in the above equation Krol’ obtained,

0 = ((p − 1)ψ2 + λ2)ψ′+

(λ2 + ψ2)[(p − 1)ψ2 + (n − 2) cot θ ψ + λ2(p − 1) + λ(n − p)]
(15)
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If n = 2 the cotangent term in the above DE goes out and variables
can be seperated in (15) to get

λdψ
λ2 + ψ2 −

(λ− 1) dψ
λ2 + ψ2 + λ(2− p)/(p − 1)

+ dθ = 0. (16)

The boundary conditions imply that φ is decreasing on (0, α) so
ψ(α) = −∞, ψ(0) = 0. Using this fact and integrating (16) it follows that

1− λ− 1√
λ2 + λ(2− p)/(p − 1)

= 2α/π (17)

which can be solved for λ in terms of α. if α = π,n = 2, it follows from
(17) that λ(π) = 1− 1/p. Partly because of this result and partly
because of what we thought we needed to handle the smoothness
problem in (13) when n > p > n − 1, we conjectured what later turned
out to be the following theorem:
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Theorem 2
If A = Df , f as in (2), then λ(π) = 1− (n−1)/p. In fact for α ∈ [3π/4, π)

λ(α)− 1 + (n − 1)/p ≈ (π − α)
p−n+1

p−1

where ≈ means the rato of these functions is bounded above and
below on the given interval by positive constants depending only on
p,n and the structure constants for A.

Remark Theorem 2 and Jerison - CNSXYZ arguments imply that if
(13) holds in R3, when 1 < p < 3 and A = Df , then Ω is Ck+2,α.
Theorem 2 is used to handle the case when 2 < p < 3.
In Rn,n > 3, we can only get smoothness when 1 < p < 2 (as in
CNSXYZ for p harmonic functions). Admittedly at one time I thought
Theorem 2 would imply this conclusion in Rn when n − 1 < p < n.
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We note that if p ≤ n − 1, then a slit has p capacity zero and it follows
that there are no solutions to (3). In fact Krol’ and Maz’ya in the paper
mentioned earlier obtained for 1 < p < n − 1 that

λ(α) = O
(

(π − α)(n−1−p)/(p−1)
)

and O
(
− 1

log(π − α)

)
for p = n − 1 as α→π.

To outline our efforts in proving Theorem 2, we spent around 6
weeks trying to use the DE in (15) to determine λ when α = π,n ≥ 3,
and u is p harmonic. From lower dimensional boundary Harnack
inequalities of Lewis and Nyström we knew that

lim
θ→π

ψ(θ) (π − θ) = −β (18)

where β = 1+p−n
p−1 . . Since φ has a relative maximum at θ = 0, it also

followed that ψ(0) = 0. Using these initial conditions, we first assumed
for certain p,n that

φ(θ) = cos(θ/2)β eg(cos(θ/2)) . (19)
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To test the validity of what was then a conjecture, we considered as a
test case n = 3,p = 5/2, so (λ(π) = 1/5) and in (19) put

g(cos(θ/2)) =
∞∑

k=0

ak (cos(θ/2))2k where ak , k = 1,2, . . . are constants.

(20)
From the series in (20) and our initial conditions one could see that the
coeficients ak could be computed recursively. Thanks to Maple and
Mathematicia, we (Andy and Murat) could compute a1 − a10. Using the
resulting partial sum for g, and then computing ψ we received strong
evidence that λ = 1/5 in this test case. However we were never able to
prove λ = 1/5. Finally we hit on using the following finess type proof of
Theorem 2.
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Ingredients of the Proof of Theorem 2 for p Harmonic Functions

To avoid confusion we shall sometimes write u(·, α) for the function in
(14). The first step in the proof is to show that λ(α) is strictly
decreasing on (0, π) so that

λ(π) = lim
α→π

λ(α) exists and λ(α) ≥ λ(π), α ∈ (0, π]. (21)

Given (21) we use local Lp integrability of |∇u| on the boundary of
K (α) (as follows from references mentioned in the proof of Theorem 1
(a)) to get
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∫
∂K (α)∩B(0,2)

|∇u|p(x , α) dHn−1 ≤ c(α)

∫ 2

0
r (λ(α)−1)p+(n−2)dr <∞.

Clearly this inequality and (21) imply

λ(π) = lim
α→π

λ(α) ≥ 1− (n − 1)/p. (22)

To obtain an estimate for λ(π) from above we shall need some
notation. If 1 < p < n, let

F (x) = cp|x |(p−n)/(p−1).

Here cp = p−1
n−p ω

1/(1−p)
n where Hn−1(Sn−1) = ωn.
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Then as is easily checked,∫
Rn
〈|∇F |p−2∇F ,∇k〉dx = k(0), whenever k ∈ C∞0 (Rn) . (23)

F is said to be a Fundamental solution to the p Laplace equation with
pole at 0. Given a bounded connected open set Ω and x0 ∈ Ω we
say that G is Green’s function for the p Laplace equation in Ω, with
pole at x0 provided

(a) G is p harmonic in Ω \ {x0},

(b) G ∈W 1,p
0 (Ω \ B(x0, ε)), whenever ε > 0 and B(x0,2ε) ⊂ Ω,

(c) F (x − x0) = G(x) + ζ(x), x ∈ Ω, where ζ is bounded
and Hölder continuous in a neighborhood of x0.

(24)
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If also Ω is starlike Lipschitz we prove∫
∂Ω
|∇G(x)|p〈x − x0, ν〉dx =

(n − p)

p − 1
ζ(x0) > 0 (25)

where ν is the outer unit normal to ∂Ω. For p = 2 this inequality was
proved by Jerison and Kenig in
Boundary value problems on Lipschitz domains, MAA Studies in
Mathematics,Studies in Partial Differential Equations, 23 (1982),1-68.
Let G1 denote the Green’s function for
Ω1 = B(0,2) ∩ K (α), x0 = (1,0 . . . ,0) = e, and 0 < π − α < π/10. Also
let G2 denote the Green’s function for B(0,2) with pole at e. With this
notation we proceed to the second step in our proof of Theorem 1 :
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Lemma 1. For some c̃ ≥ 1, depending only on p,n it is true that∫
∂K (α)∩B(0,2)

〈ν, x − e〉|∇G1|pdHn−1 ≥ n − p
p − 1

(ζ1 − ζ2)(e) ≥ c̃−1 (26)

where ν is the outer unit normal to ∂K (α) and ζ1, ζ2, are defined
relative to G1,G2, as in (24) (c). To prove the key inequality in (26) we
first use (25) for G1,Ω1. Next we note that |∇G1| ≤ |∇G2| on
∂B(0,1) ∩ Ω1 as follows from the Hopf boundary maximum principle.
Using this note and (25) for G2,B(0,2), we get the left inequality in
(26). To prove the right hand inequality one needs to make estimates
using the fact that ζ1 − ζ2 satisfies an elliptic PDE and the fact that a
slit has positive capacity when p > n − 1. The idea to use a Rellich
type inequality to make estimates as above we garnered from the
paper of Venouziou and Verchota mentioned earlier.

In order to use Lemma 1 one first proves by way of a Hopf maximum
type principle argument that
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t
|∇u(·, α)| ≥ c̄ |∇G| on ∂K (α) ∩ B(0,2) (27)

and from a boundary Harnack inequality proved by Lewis and
Nyström„ for A harmonic functions vanishing on lower dimensional
Reifenberg flat sets (mentioned earlier) that

|∇u(·, α)| ≤ c (π − θ)(2−n)/(p−1) on ∂K (α) ∩ [B(0,2) \ B(0,1)] (28)

where c̄, c depend only on p,n. Finally note that 〈x − e, ν〉 = sin(π−α)
on ∂K (α) ∩ B(0,2). Using this note and (27), (28), in (26) we conclude
for some c̆ depending only on p,n that

c−1
p ≤

∫
∂K (α)∩B(0,2)

sin(π − α)|∇G|p dHn−1

≤ c̆ (

∫ 2

0
r (λ1(α)−1)p+n−2dr) (π − α)

p−n+1
p−1

≤ c̆2

(λ1(α)− 1)p + n − 1
(π − α)

p−n+1
p−1 .

(29)
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where we have also used the fact that an element of surface area on
∂K (α) is of the form [sin(π − α)]n−2rn−2dr . From (29) and some
arithmetic we conclude that

λ(α) ≤ 1− (n − 1)/p + c∗ (π − α)
p−n+1

p−1 as α→π. (30)

for some c∗ = c∗(p,n). Combining (30), (22), we get a weak version of
Theorem 2 for p harmonic functions. 2

Query 1: Does Theorem 1 or 2 remain valid for a general A as in (1) ?
Also in [AGHLV] we proved a Brunn Minkowski inequality for a general
A as in (1) but could only handle the case of equality in BM if A = ∇f
and f is C3 in Rn \ {0}.

Coming soon?? λ(π) = 1− (n − 1)/p in Theorem 2 , n ≤ p <∞!

John Lewis (University of Kentucky) A Minkowski Inspired Geometric Problem May 26-30 31 / 32



THANKS FOR LISTENING HOPE MY
PRESENTATION WAS NOT TOO STORMY

DONALD STORMY STORMY ′S SAVIOUR

John Lewis (University of Kentucky) A Minkowski Inspired Geometric Problem May 26-30 32 / 32


	On a Minkowski Type Problem for Nonlinear Capacitary Functions
	Work in Progress

