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A Sparse Operator

A collection of cubes S is sparse if
for each S ∈ S, there is a an
ES ⊂ S , so that |ES | > 1

100 |S | and
{ES : S ∈ S} are disjoint.

Λr ,s(f , g) =
∑
S∈S

|S |〈f 〉S,r 〈g〉S,s .

〈f 〉S,r =
[ 1

|S |

∫
S

|f | dx
]1/r

.

roo
t
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Definition

For sublinear operator T and 1 ≤ r , s <∞,

‖T : (r , s)‖

is the smallest constant C so that for all bounded compactly supported
functions f , g

|〈Tf , g〉|︸ ︷︷ ︸
messy, complicated

≤ C sup
Λ

Λr ,s(f , g)︸ ︷︷ ︸
positive, localized

1 Definition only requires a bilinear form, not a linear operator.
2 The supremum over sparse forms is essentially obtained.
3 A (1, r) bound implies weak-type, for any r ≥ 1.
4 A (r , s) bound implies weighted inequalities: r < p < s ′,

‖T : Lp(w) 7→ Lp(w)‖ . C (‖w‖A(p/r), ‖w‖RH((s′/p)′))
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The Sparse T1 Theorem

Theorem (L.-Mena)

Let T be a Calderón-Zygmund operator with kernel satisfying

|∇αK (x , y)| ≤ |x − y |−1−α, α = 0, 1.

Assume for all cubes Q we have
∫
Q
|T1Q |+ |T ∗1Q | dx . |Q|. Then

‖T : (1, 1)‖ <∞

Many people contributed to this: Lerner, Conde-Rey, Hytönen, Volberg,

Petermichl, Frey, Bernicot, di Plinio, Ou, Culiuc,.....

This implies virtually all the standard mapping properties of T , with
sharp constants (A2 Theorem)

Missing in this formulation: H1/BMO type estimates.
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Why is this (1,1) sparse bound true?

If f is supported on cube Q, then Tf is typically no more than 〈f 〉Q .

‖T : L1
loc 7→ L∞‖“ <∞”
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Bilinear Hilbert Transform

BHT (f1, f2, f3) =

∫ ∫
f1(x − y)f2(x − 2y)f3(x)

dy

y
dx

Theorem (Culiuc, di Plinio, Ou)

For admissible (p1, p2, p3)

‖BHT : (p1, p2, p3)‖ <∞.

For instance (2, 2, 1) is at the boundary of admissible.
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Sparse bounds have been proved for a wide variety of operators. Virtually
the entire Ap literature has been completely rewritten in the last three
years.
Along the way, bounds have been extended, simplified, and quantified.
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Littman/Strichartz Inequality

At f (x) =
∫
|y |=t

f (x − y)dσ(t)

Theorem (Littman (1971), Strichartz (1971))

For (1/p, 1/q) are in the Lp improving triangle below,

〈A1f , g〉 . ‖f ‖p‖g‖q

1/p

1/q
1

1

( n
n+1 ,

n
n+1 )
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Small Improvement, Inside the Triangle

〈(A1 − A1 ◦ τy )f , g〉 . |y |δp,q‖f ‖p‖g‖q

Combine this with the Calderón-Zygmund-Christ method to deduce
sparse bounds.
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Lacunary Spherical Maximal Function

Mlacf (x) = sup
j∈Z

∫
Sn−1

f (x − 2jy) σ(dy)

Theorem (L.)

For (1/p, 1/q) are in the Lp improving triangle below,

‖Mlac : (p, q)‖ <∞

1/p

1/q
1

1

( n
n+1 ,

n
n+1 )
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Stein Maximal Function

M̃f = sup
1≤t≤2

At f

Theorem (Schlag and Sogge)

For (1/p, 1/q) are in the Lp improving triangle below,

‖M̃ : (p, q)‖ <∞

1
p

1
q

(0, 1)

( d−1
d , 1

d )

P4

( d−1
d , d−1

d )
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Stein Maximal Function

Mfullf = sup
t>0

At f

Theorem

For (1/p, 1/q) are in the Lp improving triangle below,

‖Mfull : (p, q)‖ <∞

1
p

1
q

(0, 1)

( d−1
d , 1

d )

P4

( d−1
d , d−1

d )

Section 0.0 Slide 14



Discrete Spherical Averages

Aλf (x) =
1

|Zd ∩ Sλ|
∑

n : |n|2=λ2

f (x − n)

|Zd ∩ Sλ| ' λd−2, d ≥ 5.
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1 Started with Bourgain, and averages along square integers:
1
N

∑N
n=1 f (x − n2)

2 Discrete implies Continuous, but the two cases are dramatically
different.

3 Entails Hardy-Littlewood method, and sometimes some serious
number theory.

4 Many new difficulties, and fine distinctions with the continuous case.

5 Deep recent developments, including work of Bourgain, Mirek,
Krause and Stein.
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Magyar Stein Wainger Theorem (2002)

Theorem

For dimensions d ≥ 5,

‖sup
λ

Aλf ‖p . ‖f ‖p,
d

d − 2
< p <∞

1 Compare to d
d−1 in the continuous case.

2 The case of 2, 3, 4 dimensions are excluded here, due to
irregularities on the number of lattice points in these dimensions.
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Theorem (Kesler, 2018)

For (1/p, 1/q) are in the triangle below,

‖sup
λ

Aλf : (p, q)‖ <∞

1
p

1
q

(0, 1)

( d−2
d , 2

d )

( d−2
d , d−2

d )
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1 The sparse bound implies the `p-improving inequality, which is a
result w/o precedent in the subject.

2 `p-improving does NOT imply the sparse bound. The ’Holder
continuity’ gain fails in the discrete setting, and there is no
replacement for it.

3 Proof heavily expolits the representation of the multiplier from
Magyar, Stein, Wainger.

4 The sparse bound implies a very rich set of weigthed and vector
valued consequences, which are entirely new in this subject.
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`p-improving in the fixed radius case

Theorem (Kesler-L (2018))

1 ‖Aλf ‖`p′ . λd(1−2/p)‖f ‖p, d
d−2 < p < 2

2 ‖Aλf ‖`p′ . Cω(λ2)λ
d(1−2/p)‖f ‖p, d+1

d−1 < p ≤ d
d−2 where

ω(λ2) = number of distinct prime factors of λ2.

3 If for all ε > 0, all λ, ‖Aλf ‖`p′ . λε+d(1−2/p)‖f ‖p, then p ≥ d+1
d−1 .
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1 The sufficient proof uses
1 Magyar’s very fine analysis of the ‘minor arcs.’
2 Andre Weil’s estimates for Kloosterman sums.
3 A result of Bourgain on average values of Ramanjuan sums.

2 The necessary direction uses a subtle ‘self-improving’ aspect of the
sufficient direction.

3 We do not know what the counterexample looks like!
We just know that it exists.

4 These results hold in dimension d = 4, if λ2 is odd.
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1 The theory of the discrete lacunary spherical maximal operator is
rather different than the continuous case.

2 Due to an example of Zienkiewicz, there are lacunary radii λk for
which supk Aλk

f is unbounded for 1 < p < d
d−1 .

3 On the other hand, we should expect results for Alacf = supk Apk/2 f ,

for prime p, since ω(pk) = 1, for all primes p and integers k.

4 More evidence that the `p-improving and sparse bounds decouple in
the discrete setting.
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Sparse bounds of the discrete lacunary spherical maximal
function

Theorem (Kesler-L, 2018)

For (1/p, 1/q) are in the triangle below,

‖sup
λ

Alacf : (p, q)‖ <∞

1
p

1
q

(0, 1)

( d−2
d−1 ,

1
d−1 )

( d−1
d+1 ,

d−1
d+1 )
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Number Theory

Aλf = Cλf + Rλf ,

Cλf =
∑

1≤λ≤q

q∑
a=1

e(−λ2a/q)C
a/q
λ f ,

c
a/q
λ (ξ) :=

∑
`∈Zd

G (a/q, `)Φq(ξ − `/q)d̂σλ(ξ − `/q)

G (a/q, `) = q−d
∑
n∈Zd

q

e(|n|2a/q + n · `/q).

K (λ, `, q) =

q∑
a=1

e(−λ2a/q)G (a/q, `)

Theorem (Magyar)

‖Rλ‖2→2 . λ−
d−3

2
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Theorem (Weil)

|K (λ, `, q)| . q−
d−1

2

√
(λ2, qodd)qeven

cq(n) =

q∑
a=1

(a,q)=1

e2πina/q

Theorem (Bourgain)

For n 6= 0
Q∑

q=1

|cq(n)| . Q1+ε
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