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I The two hyperplane conjecture

I Whence it came (level sets)

I Where it may lead

I Quantitative connectivity: Isoperimetric,
Poincaré and Harnack inequalities.
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Isoperimetric set E relative to µ

Pµ(E )≤ Pµ(F ) for all F , µ(F ) = µ(E ).

Perimeter of E relative to a measure µ on Rn

Pµ(E ) := liminf
δ↘0

µ(Eδ)−µ(E )

δ
(Eδ = δ-nbd of E ).

Example: µ = 1Ωdx , Ω open, convex:

Pµ(E ) = Hn−1(Ω∩∂E ) (E open).
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Conjecture 1. There is b(n) > 0 such that if
Ω⊂ Rn is convex, symmetric (−Ω = Ω), E ⊂ Ω is
isoperimetric, |E |= |Ω|/2, then there is a half space
H such that

H∩Ω⊂E , (−H∩Ω)⊂Ω\E , |H∩Ω| ≥ b(n)|Ω|.

The interface Ω∩∂E is trapped between
hyperplanes.

Conjecture 1∗ (Two hyperplane conjecture)
b(n)≥ b∗ > 0 an absolute constant.
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Conjecture 2 (qualitative form). If Ω⊂ Rn is
convex, E ⊂ Ω is isoperimetric, 0 < |E |< |Ω|, then

hull(E ) 6= Ω

Open question, even in R3.

First enemy of both conjectures:

E = Ω\B (B a ball).
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First serious enemy: the Simons cone

S = {(x ,y) ∈ Rn×Rn : |x |= |y |} ⊂ R2n, 2n ≥ 8.

S is area-miniminizing for fixed boundary conditions
in any Ω.

S1 = S ∩B1, Ω := hull(S1),

E := {(x ,y) ∈ Ω : |x |> |y |}, |E |= |Ω|/2.

E is not stable for the isoperimetric problem.
This is a slightly sharpened version of a theorem of
Sternberg and Zumbrun from 1990s.
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Log-concave measures on Rn

µ = e−V dx , V is convex.

Ω convex is achieved in the limit:

µ = 1Ωdx ; V (x) = 0, x ∈Ω, V (x) = ∞, x ∈Rn\Ω.

KLS Hyperplane Conjecture. There is an
absolute constant c∗ > 0 such that if µ is
log-concave on Rn and E is isoperimetric with
µ(E ) = µ(Rn)/2, then there is a half space H for
which

Pµ(E )≥ c∗Pµ(H), µ(H) = µ(E ).
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Proposition (E. Milman) “Two implies One”.
Suppose that µ is log-concave, E is an isoperimetric
set with µ(E ) = µ(Rn)/2, and there are half spaces
Hi such that

µ(Hi)≥ b∗ > 0, H1 ⊂ E , H2 ⊂ Rn \E .

Let H0 be the translate of H1 such that
µ(H0) = µ(E ). Then

Pµ(E )≥ c∗Pµ(H0), c∗ =
1

4log(1/b∗)
.
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Conjecture 3. (Half space conjecture)
If ∇2V >> 0 and E ⊂ Rn is isoperimetric for
µ = e−V dx , with µ(E ) = µ(Rn)/2, then there are
convex sets K1 and K2 such that

K1 ⊂ E , K2 ⊂ Rn \E , µ(Ki)≥ c > 0

for an absolute constant c . Moreover, at least one
of the two sets Ki can be taken to be a half space.
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First Variation for µ = w dx

Hµ = (n−1)H−n ·∇V , w = e−V .

Second Variation (stability) for S = ∂E∫
S

(|A|2 + ∇
2V (n,n))f 2w dσ ≤

∫
S
|∇S f |2w dσ

provided
∫
S
f w dσ = 0.
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Symmetry Breaking

Proposition (variant of Sternberg-Zumbrun) If
E is isoperimetric for µ = e−V dx , ∇2V >> 0, and

V (−x) = V (x), −E = E ,

then E is not stable.

Proof: Take fj = ej ·n (orthonormal basis ej).

∑ |∇fj |2 = |A|2, ∑ f 2
j = 1

Rediscovered by Rosales, Cañete, Bayle and Morgan
in radial case.
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Let C (µ) be the best constant in Poincaré’s
inequality∫

|f |2dµ≤ C (µ)
∫
|∇f |2dµ

∫
f dµ = 0. (*)

(KLS ⇐⇒ linear test functions suffice.)

When µ = 1Ωdx , extremals u are Neumann
eigenfunctions for λ = 1/C (µ):

∆u =−λu in Ω, ν ·∇u = 0 on ∂Ω,
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Level sets of the first nonconstant Neumann
eigenfunction are analogous to isoperimetric sets.

“Hot Spots” Conjecture (J. Rauch) First
Neumann eigenfunctions usually achieve their
maximum on the boundary.

Our version for today: If Ω⊂ Rn is convex, open,
bounded, and −Ω = Ω, then each first Neumann
eigenfunction is monotone:

e ·∇u > 0 in Ω (for some direction e).
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Two axes of symmetry: J-, Nadirashvili 2000.

“lip domains”, obtuse triangles: Atar-Burdzy 2004,

acute triangles: Judge-Mondal (preprint).

N. B. With monotonicity (and strict convexity) the
level sets are topologically trivial, smooth graphs.
Some extra hypothesis like −Ω = Ω is needed to get
monotonicity. Already for many acute triangles
some level sets are disconnected.
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Deformation approach to hot spots
Consider ut , Ωt , 0≤ t ≤ 1, and

G = {t ∈ [0,1] : e ·∇ut(x) > 0 in Ωt}

0 ∈ G , G is open and closed =⇒ G = [0,1].

Show G is closed by showing that the level sets

{x ∈ Ωt : ut(x) = c}

are Lipschitz graphs with vertical direction e.
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A priori Lipschitz bounds

Theorem (Bombieri, De Giorgi, Miranda) If
ϕ ∈ C∞(B1) satisfies

∇ ·

(
∇ϕ√

1 + |∇ϕ|2

)
= 0

with |ϕ| ≤M , then there is C = C (n,M) s. t.

|∇ϕ| ≤ C in B1/2.
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A priori Lipschitz bounds

Theorem (Bombieri, De Giorgi, Miranda) If
ϕ ∈ C∞(B2) satisfies

∇ ·

(
∇ϕ√

1 + |∇ϕ|2

)
= 0

with |ϕ| ≤M , then there is C = C (n,M) s. t.

|∇ϕ| ≤ C in B1.
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Proof (De Silva, J-)

Sr := {(x ,ϕ(x)) : x ∈ Br}

We want to prove

dist(S1,S1 + (0,ε))≥ c ε

Step 1. The normal distance is ≥ c1ε on a “good”
set G of large measure because∫

B3/2

|∇ϕ|dσ≤ CM2.
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Step 2. Define the normal variation ψ(X ) by

(∆S + |A|2)ψ = 0 on S2 \G .

ψ = 1 on G , ψ = 0 on ∂S2. Our goal

S(t) = {X + tψ(X )ν : X ∈ S1}

cannnot touch S1 + (0,ε) for 0≤ t ≤ c1ε for X ∈ G .
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Step 3.
∆Sw ≤ 0 (supersolution)

Bombieri-Giusti Harnack inequality:

inf
S1

w ≥ c2

∫
S1
w dσ≥ c2σ(G )

Hence,
ψ≥ c > 0 on S1.

Hence we have normal separation by cε on all of S1.
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Free boundary gradient bound
Thm (De Silva, J-) If u is positive, harmonic in

{(x ,y) : y > ϕ(x)}, |∇u|= 0 on {y = ϕ(x)},

and |ϕ| ≤M on |x |< 2, then

|∇ϕ| ≤ CM on |x |< 1.

Proof: y > ϕ(x) is an NTA domain and the

boundary Harnack inequality plays the role
analogous to the Bombieri-Giusti intrinsic Harnack
inequality.
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Bombieri-Giusti Harnack is deduced via Moser type
argument from De Georgi local isoperimetric
inequality:

min
k

∫
BβR

|f −k |n/(n−1)dσ≤ C
∫
BR

|∇S f |dσ .

Proof is via blow up and compactness from
qualitative (measure-theoretic) connectivity of area
minimizing cones due to Almgren and De Giorgi.
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Proposition Let S ⊂ Rn be an area minimizer,
then S divides Rn into two NTA domains.
Lemma If E = A1∪A2, |A1∩A2|= 0, then for
some β > 0,

P(Ai ,E ∩Br )≥ c min
i

(|Ai ∩Bβr |)(n−1)/n

The lemma is proved by the method of Almgren-De
Giorgi. Then methods of G. David and S. Semmes
yield the proposition.
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For isoperimetric surfaces in convex domains, the
first important steps have been taken by Sternberg
and Zumbrun, who showed that the stability implies
an L2 Poincaré inequality. They deduced that the
isoperimetric sets and the interfaces are connected.

With G. David, we hope to prove a scale invariant
Poincaré inequality up to the boundary of the
convex domain. This should yield the regularity
needed to perform the De Silva type argument,
provided one can get started with the right global
estimate.
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Theorem (G. David, D.J.) If S is an area
minimizing surface in Rn, then the intrinsic distance
on S is equivalent to Euclidean distance.

Main Lemma: Intrinsic balls of radius r have area
≥ crn−1.
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Calabi-Yau Conjecture
(proved by Colding-Minicozzi) The only
complete, embedded minimal surface with finite
topology in a half space in R3 is the plane.

Key lemma: The embedding is proper. This is a
qualitative version of the statement that intrinsic
distance is comparable to ambient distance.
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Happy Birthday, Steve!
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f (y) := d̃(x ,y), intrinsic distance on S = ∂E .

1. There is r/2 < ρ < r such that

mass(Sρ)≤ 1

r
σ(B̃r )

2. There is an integral current T , ∂T = Sρ and

mass(T )≤ cn(mass(Sρ))(n−1)/(n−2) .

3. If σ(B̃r ) << rn−1, then

σ(supp(T )) << σ(B̃r ).
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Isoperimetric ineq of De Giorgi implies

min
a

∫
S∩Br

|f (y)−a|dσ≤ Cr
∫
S∩BCr

|∇S f |dHn−1

For all z ∈ Br/2(x)∩S and all y ∈ B̃r/2(z),

|f (z)−a|− r/2 ≤ |f (y)−a|

|f (z)−a|− r/2 ≤ C

rn−1

∫
B̃r/2(z)

|f (y)−a|dσ

≤ Cr

rn−1

∫
BCr (x)

|∇S f |dσ≤ Cr .
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In conclusion, for all z ∈ Br/2(x),

d̃(x ,y) = |f (z)|= |(f (z)−a)− (f (x)−a)| ≤ 2Cr .

as desired.
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