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Configuration problems

Does a given ”sufficiently large” E ⊂ Rd , or Fd
q , or a Riemannian

manifold determine ”many” angles determined by triples of points,
”many” distances determined by pairs of points, or many congruence
classes of simplexes determined by k-tuples of points of E?

More generally, if X is a sufficiently large set and

F : X → Y

is a ”non-trivial” map, when is the image F (X ) suitably large?

A wide variety of problem in mathematics and computer science fall
in this category.
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Fourier bases and tiling

Let Ω be a domain in Rd or Fd
q . When does L2(Ω) possess an

orthogonal basis (or a Riesz basis) of the form

{e2πix ·a}a∈A

in Euclidean space, and an orthogonal basis of the form

{χ(x · a)}a∈A

(χ a non-trivial additive character on Fq) in Fd
q?

A related question, as it turns out, is whether a given domain Ω in
Rd , or Fd

q tiles the whole space by translation, i.e whether there exists

T ⊂ Rd , or Fd
q , such that∑

τ∈T
1Ω(x − τ) = 1 a.e.?
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Fuglede Conjecture (1974-2003)

In 1974, Fuglede conjectured that L2(Ω), Ω ∈ Rd , possesses an
orthogonal basis of exponentials iff Ω tiles Rd by translation.
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Fuglede Conjecture (1974-2003)

Fuglede stated the problem for arbitrary locally compact abelian
groups. Until recently, there was little reason to believe that the
various algebraic settings were fundamentally different from one
another.

While the Fuglede conjecture died a rather painful death in 2003 at
the hands of Terry Tao, it has led to the development of a variety of
techniques and ideas that remain quite relevant.

The Fuglede conjecture is true for unions of three or fewer intervals in
R (Laba and others). It is also true for convex sets in R2 (A.I., Katz
and Tao, 2003) and convex sets in R3 (Greenberg and Lev, 2017).
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Gabor bases

A related question, introduced by Denes Gabor, is the following. For
which g ∈ L2(Rd) does there exist S ⊂ R2d such that{

g(x − a)e2πix ·b
}

(a,b)∈S
is an orthogonal basis ?
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Gabor bases

Theorem

(A.I. and Mayeli (2018)) Let Bd denote the unit ball and d 6= 1 mod 4.
Then there does not exist S ⊂ R2d such that {1Bd

(x − a)}(a,b)∈S is an

orthogonal basis of L2(Rd).

Quite a bit is known when the window function g is a Gaussian, when
S = A× B or if S is assumed to be a lattice (Nitzan, Wang ...).

For general spectra, little is known even in the case when g is the
indicator function of a symmetric convex set. In the non-symmetric
case, orthogonal Gabor basis does not exist (Chung and Lai (2017)).
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Falconer’s problem

Let E be a compact subset of Rd , d ≥ 2. Define

∆(E ) = {|x − y | : x , y ∈ E},

where |x | =
√

x2
1 + x2

2 + · · ·+ x2
d .

The question we ask is, how large does the Hausdorff dimension of E
need to be to ensure that the Lebesgue measure of ∆(E ) is positive?

If E has positive Lebesgue measure, then E − E contains an open
ball, so |∆(E )| > 0. But what if E is much smaller?
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The lattice construction

Let E s
q denote the q−

d
s -neighborhood of

1

q

{
Zd ∩ [0, q]d

}
.

It is a classical and not very difficult theorem that if q1 = 2, say, and
qi+1 > qii , then the Hausdorff dimension of E = ∩iE s

qi
is s.

Observe that

|∆(E s
qi

)| . q
− d

s
i ·#∆(Zd ∩ [0, qi ]

d).
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The lattice construction (continued)

In order to estimate #∆(Zd ∩ [0, qi ]
d), observe that it is equivalent

to count the number of values of

x2
1 + x2

2 + · · ·+ x2
d : 0 ≤ xj ≤ qi .

It follows that
#∆(Zd ∩ [0, qi ]

d) ≤ dq2
i .

Going back, we see that

|∆(E s
qi

)| . q
− d

s
i · q2

i → 0 if s <
d

2
.

Alex Iosevich (University of Rochester ) Point configurations May 30, 2018 ICMAT UMA 11 / 34



The lattice construction (continued)

In order to estimate #∆(Zd ∩ [0, qi ]
d), observe that it is equivalent

to count the number of values of

x2
1 + x2

2 + · · ·+ x2
d : 0 ≤ xj ≤ qi .

It follows that
#∆(Zd ∩ [0, qi ]

d) ≤ dq2
i .

Going back, we see that

|∆(E s
qi

)| . q
− d

s
i · q2

i → 0 if s <
d

2
.

Alex Iosevich (University of Rochester ) Point configurations May 30, 2018 ICMAT UMA 11 / 34



The lattice construction (continued)

In order to estimate #∆(Zd ∩ [0, qi ]
d), observe that it is equivalent

to count the number of values of

x2
1 + x2

2 + · · ·+ x2
d : 0 ≤ xj ≤ qi .

It follows that
#∆(Zd ∩ [0, qi ]

d) ≤ dq2
i .

Going back, we see that

|∆(E s
qi

)| . q
− d

s
i · q2

i → 0 if s <
d

2
.

Alex Iosevich (University of Rochester ) Point configurations May 30, 2018 ICMAT UMA 11 / 34



The Falconer Conjecture

Conjecture

(Falconer, 1986) Suppose that E ⊂ Rd , d ≥ 2, is compact, of Hausdorff
dimension > d

2 . Then |∆(E )| > 0.
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World records

Falconer established the threshold
d + 1

2
(1986), Wolff (1999)

obtained
4

3
in R2 (1999) and Erdogan got

d

2
+

1

3
in dimensions

three and higher (2006).

X. Du, L. Guth, Y. Ou, H. Wang, B. Wilson, and R. Zhang obtained

the threshold
9

5
in R3 and the threshold

d

2
+

1

4
+

d + 1

4(2d + 1)(d − 1)
for d ≥ 4.

Guth, A.I., Ou and Wang improved the threshold
4

3
in R2 to

5

4
(2018) and extended the result to other smooth metrics.
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The Erdős Conjecture

Conjecture

(Erdős (1945)) Let P be a finite subset of Rd , d ≥ 2. Then

#∆(P) ' (#P)
2
d .
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The Erdős Conjecture

Conjecture

(Erdős (1945)) Let P be a finite subset of Rd , d ≥ 2. Then

#∆(P) ' (#P)
2
d .
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World records

The conjecture is solved in two dimensions (Guth and Katz, 2011),
based in part on a previous breakthrough due to Elekes and Sharir.

In higher dimensions the world record (Solymosi and Toth, 2008) is

#∆(P) ' (#P)
2
d
−O( 1

d3 ).

A natural question to ask is whether there is a direct quantitative
connection between the Erdős and Falconer exponents. This turns
out to be quite relevant in terms of applications to the theory of
exponential bases.

Alex Iosevich (University of Rochester ) Point configurations May 30, 2018 ICMAT UMA 15 / 34



World records

The conjecture is solved in two dimensions (Guth and Katz, 2011),
based in part on a previous breakthrough due to Elekes and Sharir.

In higher dimensions the world record (Solymosi and Toth, 2008) is

#∆(P) ' (#P)
2
d
−O( 1

d3 ).

A natural question to ask is whether there is a direct quantitative
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Connecting Erdős and Fuglede

Theorem

(A.I., N. Katz and S. Pedersen (2000)) Let Bd be the unit ball in Rd ,
d ≥ 2. Then L2(Bd) does not possess an orthogonal basis of exponentials.

Proof: Suppose that {e2πix ·a}a∈A is an orthogonal basis for L2(Bd).
Then it is not difficult to see that A is a Delone set, i.e

i) A is separated, i.e |a− a′| ≥ c > 0 for all a 6= a′ ∈ A, and

ii) A is well-distributed, i.e ∃C > 0 such that every cube of
side-length C contains at least one point of A.
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Connecting Erdős and Fuglede

It follows that a cube QR of side-length R (large) contains ≈ Rd

points of A. By orthogonality,

0 =

∫
Bd

e2πix ·(a−a′)dx = χ̂Bd
(a− a′) = 0.

It follows that J d
2
(2π|a− a′|) = 0 for all a 6= a′ ∈ A.

Since the zeroes of J d
2

are uniformly separated, we conclude that

#∆(A ∩ QR) ≤ CR,

which leads to an immediate contradiction in view of the Erdős
exponents from the previous slide.
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Connecting Falconer and Fuglede

Replace the ball Bd by K , a bounded symmetric convex set with a
smooth boundary and everywhere non-vanishing Gaussian curvature.

Following the argument for the ball, we reach the point where

0 = χ̂K (a− a′)

= |a− a′|−
d+1

2 sin

(
2π

(
ρ∗(a− a′)− d − 1

8

))
+ O(|a− a′|−

d+3
2 ).

Here
K = {x ∈ Rd : ρ(x) ≤ 1}

and
ρ∗(ξ) = sup

x∈K
x · ξ.
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Connecting Falconer and Fuglede

We are led to the following version of the Erdős distance problem:

Choose A1,A2 ⊂ A ∩ QR such that #Aj ≈ Rd and dist(A1,A2) ≈ R.

Let
∆K (A1,A2) = {ρ∗(a− a′) : a ∈ A1, a

′ ∈ A2}.

If L2(K ) has an orthogonal basis of exponentials, then the argument
above implies that the number of R−1-separated elements of
∆K (A1,A2) is ≤ CR.

Can we obtain a contradiction by proving that the number of
R−1-separated elements of ∆K (A1,A2) is much greater than CR?
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Connecting Falconer and Fuglede: key complications

Two key issues just arose:

i) We must understand distance sets with respects to different
metrics.

ii) We must estimate the number of R−1-separated distances.

It turns out that once the Euclidean norm is replaced by the norm
induced by a general convex body K and separated distances are
required, the harmonic analysis techniques connected with the
Falconer distance problem provides an efficient framework.
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From Falconer to Erdős

Suppose that one can show that if µ is a compactly supported Borel
measure on Rd , d ≥ 2, with

Is(µ) =

∫ ∫
|x − y |−sdµ(x)dµ(y) ≈ 1,

then |∆K (E )| ≥ c > 0, where E is the support of µ.

Let Pn be a finite n−
1
2 -separated point set in [0, 1]d , d ≥ 2, of size n.

Let
µn(x) = n−1n

d
s

∑
p∈P

φ(n
1
s (x − p)).
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From Falconer to Erdős

If we are fortunate and Is(µn) ≈ 1, then

c < |∆K (support(µn))| . n−
1
s E(Pn),

where E(Pn) is the number of n−
1
s -separated elements of ∆K (E ).

This allows us to conclude that

E(Pn) & n
1
s .

Various versions of this conversion mechanism were established by
A.I.-Hofmann (2005), A.I.-Laba (2005) and
A.I.-Rudnev-Uriarte-Tuero (2008).
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Back to Fuglede

Theorem

(A.I.-N. Katz-T. Tao (2001)) Let K be a symmetric bounded convex set
with a smooth boundary and at least one point where the Gaussian
curvature does not vanish. Then L2(K ) does not possess an orthogonal
basis of exponentials.

By above, the result follows from the following Falconer variant:

Theorem

Let E ,F be compact subsets of Rd , d ≥ 2, equipped with Borel measures
µE , µF . Let K be a bounded symmetric convex set with a smooth
boundary and non-vanishing curvature. Then

|∆K (E ,F )| & 1√
I d+1

2
(µE )I d+1

2
(µF )

.
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Death of Fuglede

In 2003, Terry Tao constructed E ⊂ Z5
3 of size 6 which has an

orthogonal basis of characters, i.e {χ(x · a)}a∈A, with χ(t) = e
2πit
p .

Since 35 is not divisible by 6 by the uniqueness of prime factorization,
E does not tile Z5

3 by translation.

Terry transferred this example to R5 by taking a union of cubes
xj + [0, 1]5 with xj corresponding to the points of E and the Fuglede
conjecture was dead, at least in one direction.

Kolountzakis and Matolcsi (2006) obtained counter-examples in both
directions in dimension 4 and 5 and Farkas (2006) obtained a
counter-example in one direction in 3 dimensions.
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Partial rebirth of Fuglede

Theorem

(A.I., Mayeli and Pakianathan (2016)) The Fuglede conjecture holds in
Zp × Zp if p is prime.
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Basis implies tiling

Suppose that {χ(x · a)}a∈A is an orthogonal basis for L2(E ). Then
#E = #A (linear algebra).

Lemma

(Magic Lemma) Suppose that E ⊂ Z2
p such that

1̂E (m) ≡
∑

χ(−x ·m)1E (x) = 0 for some m ∈ Z2
p.

Then 1̂E (rm) = 0 for all r 6= 0 and E is equidistributed on lines ⊥ m.

It follows that #E = kp. If k = 1 we see immediately that E must
tile by translation since E has exactly one point on each line ⊥ m, for
some m ∈ Z2

p. But how do we eliminate the case k > 1?
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Basis implies tiling (continued)

If k > 1, #E = #A > p, so A determines every possible direction, i.e
every non-zero x ∈ Z2

p can be written in the form

t(a− a′), a, a′ ∈ A, t ∈ Zp.

By orthogonality and the magic lemma, for any a 6= a′ ∈ A, r 6= 0,∑
x

χ(x · r(a− a′))1E (x) = 0

and we conclude that E = Z2
p. This proves that E must tile.
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Tiling implies basis

Suppose that E tiles by translation, i.e for all x ∈ Z2
p,∑

1E (x − τ)1T (τ) = 0.

It follows that

1̂E (m)1̂T (m) = 0 for all m 6= (0, 0).

This implies that either T = Z2
p (not interesting), or there exists m

such that 1̂E (m) = 0 and the magic lemma applies and we deduce
that E is equidistributed on the p lines ⊥ m.
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Tiling implies basis (continued)

Since E tiles, #E = 1, p or p2. The only interesting case is #E = p.

After applying a rotation we may assume that E = {(t, 0) : t ∈ Zp}
and it is easy to see that taking A = E gives us an orthogonal
exponential basis.

This completes the proof up to the verification of the Magic Lemma.
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Proof of the magic lemma

Suppose that 1̂E (m) = 0 for some m 6= (0, 0). Then

0 =
∑
x∈Zd

p

χ(−x ·m)1E (x) =
∑
t∈Zp

(χ(−1))tn(t),

where
n(t) =

∑
x ·m=t

1E (x).

But χ(−1) is the pth root of unity with the minimal polynomial

1 + s + s2 + · · ·+ sp−1.

This implies that n(t) is constant in t by the uniqueness of the
minimal polynomial, so E is equidistributed on lines ⊥ m.
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THANK YOU!
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Shannon, Simon and I
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