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Harmonic measure in the “classical case”

Here and below Ω ⊂ Rn is a connected open set and E = ∂Ω.

For the next definitions, assume Ω bounded. Let X ∈ Ω be given.

Intuitive definition of the harmonic measure ωX = ωX
Ω : for A ⊂ ∂Ω

measurable, ωX
Ω (A) is the probability of a Brownian path starting

from X , to lie in A the first time it hits E = ∂Ω.

This works on many domains (if E is not too small).

Analytic definition : Find a way to solve, for g ∈ C(∂Ω), the
Dirichlet problem ∆u = 0 on Ω and u = g on ∂Ω.

Then use the maximum principle (|u(X )| ≤ ||g ||∞) and Riesz to
find a probability measure ωX

Ω such that

u(X ) =

∫
E
g(ξ)dωX

Ω (ξ) for g ∈ C(∂Ω).

Again works on many domains and coincides with the previous
definition. Easier for an analyst.
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Ahlfors regular sets

We’ll restrict to Ahlfors regular (AR) sets of dimension d < n.
That is, E ⊂ Rn closed and such that for some Borel measure σ on
E and some C0 ≥ 1,

(1) C−1
0 rd ≤ σ(E ∩ B(x , r)) ≤ C0r

d for x ∈ E and r > 0.

So now we take E unbounded.

Easy to show: C−1Hd
|E ≤ σ ≤ CHd

|E . So we may take σ = Hd
|E .

Convention for below: classical case is when d = n − 1 and
high co-dimension case when d < n − 1.

“Main” question since we have σ: when, in geometric terms for E ,
is ωX

Ω absolutely continuous with respect to σ?

By Harnack, ωX
Ω << ωY

Ω << ωX
Ω for X 6= Y , so the question does

not depend much on X .
Mostly interested in quantitative mutual absolute continuity (A∞)
defined below.
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Absolute Continuity (in the classical case)

A subject with a long history. Just hints here.

When n = 2, R2 ' C, ωΩ has conformal invariance, the question is
related to a control of |ψ′| for conformal mappings ψ; important
results by Riesz & Riesz (1916), Lavrentiev (1936), Carleson,
Makarov, Jones, Bishop, etc.

For n ≥ 2, Dahlberg (77), Jerison-Kenig, Wolff, Bourgain,
D.-Jerison, Semmes (up to A∞ for NTA + UR)...

More recently Hofmann, Martell, Uriarte-Tuero ; Azzam, Nyström,
Toro (converse). Add Bennewitz, Lewis, Mourgoglou, Tolsa, etc.
for optimal replacements for NTA.
See A-H-M-M-Mayboroda-T-Volberg, for non AR boundaries. Etc.
Just one result here: if Ω and its complement satisfy the
Corkscrew conditions and Ω satisfies the Harnack chain condition
(some reasonable connectedness conditions) and E = ∂Ω is AR of
dimension n − 1, then

ω ∈ A∞(σ)⇔ E is uniformly rectifiable (Explain a bit).



Definitions of Corkscrew points and of A∞(σ)

The Corkscrew property says that for x ∈ E and r > 0 we can
choose a CS point Ax ,r ∈ Ω ∩ B(x , r), with dist(Ax ,r , ∂Ω) ≥ C−1

cs r .
We do so.
The Harnack chain condition is the existence of thick paths in Ω
from any X ∈ Ω to any Y ∈ Ω. Not written here today.

Our preferred condition of quantitative mutual absolute continuity
is ω ∈ A∞(σ), which means:
for ε > 0 there exists δ > 0 (small) such that, for A ⊂ E ∩ B(x , r)
(a measurable set and a ball centered on E ),

(2) ω
Ax,r

X (E ) < δ =⇒ |E |
|B(x , r)|

< ε,

Really looks like standard A∞. A symmetric relation here (because
ω and σ are doubling). Other equivalent definitions exist.
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Classical elliptic operators

The results above extend to the situation where ∆ is replaced by
an ellipitic operator L = − div[A(X )∇], where the n × n
matrix-valued function A with real coefficients satisfies the usual
boundedness and ellipticity conditions

(2)
∣∣A(X )ξ · ζ

∣∣ ≤ Ce |ξ||ζ| for X ∈ Ω and ξ, ζ ∈ Rn,

(3) A(X )ξ · ξ ≥ C−1
e |ξ|2 for X ∈ Ω and ξ ∈ Rn.

The main results above (including some converse!) extend to such
L = − div[A(X )∇], under appropriate Carleson measure conditions
on the size/variations of A.

Works by Azzam, Hofmann, Martell, Mayboroda, Nyström, Pipher,
Toro just for this; I forget many and concerning close problems.
Important here because we’ll not have a beautiful Laplacian soon.



Higher codimensions?

Why take E = ∂Ω of dimension d < n − 1 ?

Curiosity: Do some things go through? What is so special about
codimension 1? What is the relation of the Riesz transform?

Laziness: we don’t need to understand (weaker versions of) the
Corkscrew and Harnack conditions, because these are “trivially”
true when E ∈ AR(d).

After the fact: discover new operators.

For me at least: the pleasure to do the forbidden thing (see below).

From now on E = ∂Ω, but now E ∈ AR(d) for some d < n − 1.
σ = Hd

|E (for instance). By the way, d ∈ N is not needed.

As soon as d ≤ n − 2, small problem with ∆ and the other elliptic
operators L: our definitions of harmonic measure fail because

- Since E is too small (polar), the Brownian paths do not meet E .

- We cannot solve the Dirichlet problem for continuous functions
on Ω = Rn \ E ; nice harmonic functions on Ω extend through E !
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Our program

Two (recent independent) ways to deal with this.
• J. Lewis, K. Nyström, A. Vogel : Replace ∆ with a p-Laplacian
(a non linear operator);

• DFM: Replace ∆ with a degenerate (but linear) elliptic operator
L, with coefficients that tend to ∞ near E .

This is what we’ll describe here.
Linear operators, but which depend on E !
Need to reconstruct elliptic theory before we think about A∞(σ).

The simplest case is when E = Rd ⊂ Rn and Ω = Rn \ Rd ; then

L = − div[A(X )∇] with A(X ) = dist(X ,E )d+1−n In

is very good; radial solutions of Lu = 0 in Ω come from harmonic
solutions of ∆u = 0 in Rd+1

+ .

Think of the weight w(X ) = dist(X ,E )d+1−n as inducing a drift
that on average pushes Brownian motion towards E?



Our (degenerate) elliptic operators (1): The geometry

Looking for the right class... We’ll use the approach of minimizing
energy in the right homogeneous Sobolev space W . Set

δ(X ) = dist(X ,E ) for X ∈ Ω.

Take the weight w(X ) = dist(X ,E )d+1−n = δ(X )d+1−n on Ω.
(In the classical case, this would yield w = 1.) Define

(4) W = H1(Ω) =
{
u ∈W 1,2

loc (Ω) ;

∫
Ω
|∇u|2w(X )dX < +∞

}
.

And on E = ∂Ω, define the space H = H1/2(E ) by
(5)

H =
{
f ∈ L2

loc(E ) ;

∫
E

∫
E

|f (x)− f (y)|2dσ(x)dσ(y)

|x − y |d+1
< +∞

}
.

Since E ∈ AR(d), we can construct a trace operator Tr = W → H
and an extension operator Ex : H →W , with Tr ◦ Ex = I .



Degenerate elliptic operators (2): Our class of matrices,
Forms, and Lax-Milgram

The natural class of operators that goes with W is the class of
operators L = − div[A(X )∇] such that A(X ) = w(X )A(X ) for
some classical elliptic matrix A [i.e., that satisfies (2) and (3)].
We’ll write this A ∈Mdell(Ω) or even L ∈Mdell(Ω).

Because then, the form (u, v)→
∫

Ω A∇u · ∇v is naturally defined
for u, v ∈W . And by the Lax-Milgram theorem, the problem

(6) Lu = 0 (weakly on Ω) and Tr(u) = g

has a unique solution u ∈W for any g ∈ H.

Then there is a long list of things to check (see below), following
some classical proofs, to define harmonic measures ωX

L , X ∈ Ω,
and an acceptable elliptic theory for L ∈Mdell(Ω). But...



Elliptic Theory (1): A statement

Recall we have a class Mdell(Ω) of matrices A, or operators
L = − div[A(X )∇]. By acceptable elliptic theory we mean...

THEOREM (DMS)

Let E ⊂ Rn be an Ahlfors regular set of dimension d < n − 1
(d is an integer or not).
Take L = divA∇ such that dist(X ,E )n−d−1A(X ) is bounded
elliptic. That is, let L ∈Mdell(Ω).
Then for f ∈ C0(E ) we can solve Lu = 0 on Ω, with Trace(u) = f
on E , and for X ∈ Ω, and there is a doubling probability measure
ωX = ωX

L on E such that u(X ) =
∫
E fdωX for f and u as above.

And with additional properties listed below.

We call ωX or ωX
L the harmonic measure. When X changes, these

measures are mutually absolutely continuous (by Harnack).

See below for additional properties. In short, ωX has the “usual
properties” valid for NTA domains in the co-dimension 1 case.



Elliptic Theory: the main differences

Good news: the existence of corkscrew points for Ω, and the
Harnack chain condition, follow from the low dimension
(E ∈ AR(d) for some d < n − 1).

Looks dangerous: no barrier functions , in fact no complementary
component. We replace this with the weighted Poincaré estimate

(7)

∫
B(x ,r)

|u(X )|2w(X )dX ≤ Cr2

∫
B(x ,r)

|∇u(X )|2w(X )dX

when x ∈ E , r > 0 and u ∈W (or smoother) is such that
Tr(u) = 0 on E ∩ B.
Which is proved essentially as the boundedness of Tr (well chosen
w and we can find lots of paths from X ∈ Ω ∩ B to y ∈ E ∩ B).



Elliptic Theory (the shopping list)

We...
- Check by hand the existence of Harnack chains (even tubes);
- Prove some weighted Poincaré inequalities in Ω;
- Define weak solutions;
- Prove interior Moser estimates, interior Hölder estimates,
Harnack inequalities for solutions;
- Prove Caccioppoli, Moser, Harnack, Hölder estimates on the
boundary;
- Use this to prove a maximum principle, solve the Dirichlet
problem, and define the harmonic measure ωX

L ;
- Define Green functions and estimate them;
- Prove comparison principles (at the boundary) and ωL is doubling.

At the end we get the usual toolbox, and are ready for more refined
questions where additional regularity for E and A should be needed.



Specific operators

What should replace ∆ (or good perturbations of ∆) here?
We’ll prefer operators L = − div[A(X )∇] where A(X ) = g(X ) In
for some positive function g .
Given the definition of Mdell , the simplest is to take
g(X ) = dist(X ,E )d+1−n = δ(X )d+1−n, but for d ≥ 2 we think
δ(X ) is not smooth enough, so we prefer

(8) L = − div[A(X )∇] with A(X ) = Dα(X )−n+d+1.

where we pick α > 0 and set

(9) Dα(X ) = Rα(X )−1/α with Rα(X ) =

∫
E
|X − y |−d−αdσ(y).

Think that Dα is a smoother substitute for δ, defined as
intrinsically as we could. Homogeneity is correct.
A ∈Mdell(Ω) and we would get L = c∆ when E = Rd ⊂ Rd+1.
A is as nice as we can, and we expect L to be good when E is nice.



A quantitative mutual absolute continuity statement

Question: Given Ω and E = ∂Ω, set Dα and L = Lα as above.
When does ωL ∈ A∞(σ)?

In co-dimension 1, this would be when E is uniformly rectifiable.

Here is an analogue of Dahlberg’s theorem (77). Take

E =
{
x + ϕ(x) ; x ∈ Rd

}
, where ϕ : Rd → Rn−d is ε-Lipschitz.

Set σ = Hd
|E , D = Dα as in (9), L = − div[D−n+d+1

α ∇] as in (8).

THEOREM (DMS)

If ε is small enough, then ωL ∈ A∞(σ).

Works also with A(X ) = δ(X )−n+d+1 when d = 1 (but for d > 1
δ(X ) is too irregular for our proof.



Comments and extensions

1. The Dirichlet problem for Lp, p large, for these operators was
solved by J. Feneuil, S. Mayboroda, and Z. Zihui [Extra
complications for localizations].

2. Some different operators work too (“Carleson” perturbations of
L). With little extra work in this case.

Proof of the thm: treat enough degenerate elliptic operators in the
special case of E = Rd ⊂ Rn, and then change variables correctly.
Need to be careful about treating the last n − d coordinates in the
change of variable almost isotropically; see more below.

Small Lipschitz required for our change of variables to be
bilipschitz. Otherwise, we would need a different formula, or to cut
the change of variables into smaller pieces and do as above?

Naturally expected: E uniformly rectifiable is enough. See below.



Good Degenerate Elliptic Operators in Ω0 = Rn \ Rd

Here we take E = Rd ⊂ Rn (d ≤ n − 2), write the variable
(x , t) ∈ Rn × Rn−d , and take A(x , t) = |t|−n+d+1M(x , t), with

(10) M(x , t) =

(
M1(x , t) C2(x , t)
C3(x , t) b(x , t)In−d + C4(x , t)

)
,

where M1(X ) is an elliptic d × d matrix, the |Cj |2 satisfy Carleson
measure estimates, In−d is the identity matrix, and b is a function
on Ω0 = Rn \ Rd such that C−1 ≤ b ≤ C and |t|2|∇b|2 satisfies a
Carleson measure estimate.

THEOREM

Under these assumptions, ωX is absolutely continuous with respect
to the Lebesgue measure on Rd , with an A∞ density.

Comments: 1. General enough even when d = n − 1.
2. Notice the isotropy in t.
3. More good operators here = more OK change of variables later.



Proofs

Main steps in the proof of the theorem in Rd :
- An estimate like ||Su||22 ≤ C ||Nu||22 for solutions (localized),
obtained by integrations by parts and Carleson measure estimates;
- As a consequence, Carleson measure estimates on the square
function of solutions of the Dirichlet problem with bounded
boundary values on Rd ;
- A general argument, roughly as in Kenig-Kirchheim-Pipher-Toro
or Dindos-Petermichl-Pipher, to go from there to A∞.

And then, for the theorem in Ω = Rn \ E , an appropriate
bi-Lipschitz change of variable ψ : Ω0 → Ω, and some regularity for
D (coming from Tolsa α-numbers for σ).

It is important that ψ almost preserves the directions orthogonal to
Rd or E . Just moving points up and down, even smoothly, is not
good enough to give the right form to the conjugate operator of L.

This explain the need for a specially designed change of variables.



Uniform Rectifiability Dream Part 1. (D.-Mayboroda)

Modulo writing up (more?), we sort of claim the following.

THEOREM

Let E ⊂ Rn be Ahlfors regular of dimension d < n − 1 and
uniformly rectifiable.
Take L = divA∇, with A(X ) = Dα(X )−n+d+1In as in (8)–(9).
Then ωL ∈ A∞(Hd

|E ).

What we hoped for before we started!
Notice again, no NTA condition is added; it is automatic.

Proof: The needed ingredients are (at least) a stopping time as in
the corona construction, a good change of variable for each
(corona) region as in the Reifenberg parameterization of D.-Toro,
an extrapolation result that shows that a control in every region is
enough, a generalization by DJF of the elliptic theory above to
accommodate boundaries of mixed dimensions, and a little bit
more time please.



Questions, looking for a converse

Again this should stay true with D(X ) = dist(X ,E ) when d = 1.
In general we believe but can’t prove that the additional regularity
of D is needed. Carleson measure estimates on the variations of D
are useful in the proof.

Notice the nonlinear nonlocal dependence on E through Dα.

But is there a converse? That is, take Dα and assume that
ωL ∈ A∞(σ); can we say that E is uniformly rectifiable?
Can ωL ∈ A∞(σ) ever happen when d /∈ N?

OK but quite hard in codimension 1, with the help of the
boundedness of the Riesz transform.

A statement of order 0, corresponding to a blow-up limit at a point
of density of dω

dσ would be nice (suppose ω∞ = σ; is E flat?).

So far, we have no Riesz transform that would play the same role
(at least for describing the solutions). We can define some square
functions (as in the USFE), but see no obvious relation with ωX

L .



A strange case (D.-Engelstein-Mayboroda)

We found a special case where things are simpler, and expected
that the converse would be easier to prove in this case, i.e., when

α = n − d − 2 (hence n > d + 2, but d /∈ N allowed.

Then Rα(X ) =

∫
E

dσ(y)

|X − y |n−2
is harmonic, and a computation

shows that D(x) = R(x)−1/α satisfies Lu = 0.

Assume to simplify that E is rectifiable. By another computation,
∂D
∂n = 1 (the normal derivative, maybe multiply σ by a constant to
normalize) a.e. on E , and so D is the Green function for L, with
pole at ∞. That is, ω∞ = σ.
Very strange, no? (Think about the Brownian paths.)

Even when E is merely Ahlfors regular, it seems that ω << σ, with
a density h such that C−1 ≤ h ≤ C .

Not at all what we expected! Does α = n− d − 2 mean something
special? Is it the only case where this happens?

[All this is subject to writing down, but it is coming.]



More operators to study

Along the process we found out that there are other natural
questions in this context. Such as:

Improve the theory for the operators we have (We’ve seen the
beginning of Dirichlet problem on Lp, many others...)

Extend again our class Mdell , in particular to the case when the
geometry of E comes with a doubling measure µ (nice enough if
we want A∞(µ))?

For instance that would allow us to deal with sawtooth domains
(two dimensions at the same time).

Or in connection to fractional integration?

Did I mention connections to Square Function Estimates and the
search for a relevant Riesz transforms?
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Conclusion

Thanks for your attention!

HAPPY BIRTHSDAY STEVE!


