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Second order differential equations: ∆ = @xx + @yy + : : :

The force required to bend a string under tension is proportional to the
second derivative of its displacement, @xxh.

@tth = c@xxh @xxh = c @xxh = 0

The force required to bend a membrane under tension is proportional to
∆h = @xxh + @yyh.

@tth = c∆h ∆h = c ∆h = 0
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Harmonic boundary value problems

There is an extensive theory for the harmonic Dirichlet
problem (

∆u = 0 in Ω;

u = f on @Ω

and the Neumann problem(
∆u = 0 in Ω;

� · ∇u = g on @Ω:
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Second order boundary value problems

Suppose the matrix A is uniformly positive definite and bounded:

Re ~v · A(X)~v ≥ –|~v |2; |A(X)| ≤ Λ for all X ∈ Rd ; ~v ∈ Cd :

There is an extensive theory for the second order elliptic
Dirichlet problem(

∇ · A∇u = 0 in Ω;

u = f on @Ω

and the Neumann problem(
∇ · A∇u = 0 in Ω;

� · A∇u = g on @Ω:
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Higher order differential equations

The force required to bend a thin elastic rod is proportional to the fourth
derivative of its displacement, @xxxxh.

The force required to bend a thin elastic plate is proportional to
∆2h = @xx(@xxh) + @xy (2@xyh) + @yy (@yyh).

(Euler-Bernoulli beam equation) The force required to bend an
inhomogeneous thin elastic rod is proportional to the fourth derivative of
its displacement @xx(E(x) I(x) @xxh).
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Higher order boundary value problems

We are interested in higher-order differential equations such as the
biharmonic equation (in Rd)

∆2u = ∇2 · ∇2u =
dX
j=1

dX
k=1

@jk(@jku) = 0

or more generally

∇m · A∇mu =
X

|¸|=|˛|=m
@¸(A¸˛@

˛u) = 0:

We are interested in the Dirichlet problem(

∇m · A∇mu

= 0 in Ω;

u = f ; � · ∇u

=

g

on @Ω:
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Higher order Neumann boundary values

In the second-order case ∇ · A∇u = 0, the Neumann boundary values of u
are � · A∇u.

Notice that if ∇m · A∇mu = 0 in Ω, then
ˆ

Ω
∇m’ · A∇mu

depends only on ∇m−1’
˛̨
@Ω

. So

ˆ
Ω
∇m’ · A∇mu =

ˆ
@Ω
∇m−1’ · ṀA

Ωu dff

for some ṀA
Ωu.

If m = 1 then MA
Ωu = � · A∇u.

A free boundary corresponds to ṀA
Ωu = 0.
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Ωu.

If m = 1 then MA
Ωu = � · A∇u.

A free boundary corresponds to ṀA
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Ωu = 0.

Ariel Barton The higher-order Neumann problem May 30, 2018 7 / 39



Higher order boundary value problems
We are interested in the Dirichlet problems8>><>>:

∇m · A∇mu = 0 in Ω;

∇m−1u
˛̨
@Ω

= ˙f ;

‖ eN(∇m−1u)‖Lp(@Ω) . ‖ ˙f ‖Lp(@Ω);

8>><>>:
∇m · A∇mu = 0 in Ω;

∇m−1u
˛̨
@Ω

= ˙f ;

‖ eN(∇mu)‖Lp(@Ω) . ‖∇fi ˙f ‖Lp(@Ω);

and the Neumann problems

8>>><>>>:
∇m · A∇mu = 0 in Ω;

ṀA
Ωu = ġ ;

‖ eN(∇m−1u)‖Lp(@Ω) . ‖ġ‖Ẇ p
−1(@Ω);

8>><>>:
∇m · A∇mu = 0 in Ω;

ṀA
Ωu = ġ ;

‖ eN(∇mu)‖Lp(@Ω) . ‖ġ‖Lp(@Ω):

Nu(X) = sup{|u(Y )| : |X − Y | < (1 + a) dist(Y; @Ω)}
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Regularity of coefficients
(Caffarelli, Fabes, Kenig, 1981) There is a real, symmetric matrix A,
continuous in B ⊂ R2, such that

∇ · A∇u = 0 in B;

� · eA∇

u = f on @B; ‖Nu‖Lp(@B) . ‖f ‖Lp(@B)

is ill-posed for all 1 < p <∞.

(x; t) 7→ (x; t −  (x))

u
ũ

If ∆u = 0, then ∇ · A ∇ũ = 0, where

A (x; t) =

 
I ∇ (x)

∇ (x)T 1 + |∇ (x)|2

!
Notice A (x; t) is real, symmetric, and t-independent.
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t-independence and Lipschitz domains

From now on we will work with equations of the form

∇m · A∇mu =
X

|¸|=|˛|=m
@¸(A¸˛@

˛u) = 0

where the coefficient matrix A is elliptic and t-independent, that is,

A(x; t) = A(x; s) = A(x) for all x ∈ Rd−1 and all s, t ∈ R.

We will work in Lipschitz graph domains

Ω = {(x; t) : x ∈ Rd−1; t >  (x)} ⊂ Rd

where ∇ ∈ L∞(Rd−1).
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History: the second-order case

(Jerison and Kenig, 1981) If A is real-valued, t-independent and
symmetric, then for all 2− " < p <∞ we can solve

∇ · A∇u = 0 in Ω; u
˛̨
@Ω

= f ; ‖Nu‖Lp(@Ω) . ‖f ‖Lp(@Ω):

(Kenig and Pipher, 1993) If A is t-independent, real-valued and
symmetric, and if 1 < p < 2 + ", then we can solve

∇ · A∇u = 0 in Ω; u
˛̨
@Ω

= f ; ‖ eN(∇u)‖Lp(@Ω) . ‖∇fi f ‖Lp(@Ω);

∇ · A∇u = 0 in Ω; � · A∇u = g; ‖ eN(∇u)‖Lp(@Ω) . ‖g‖Lp(@Ω):

(Auscher and Mourgoglou, 2014) If A is t-independent, real-valued and
symmetric, and if 2− " < p <∞ , then we can solve

∇ · A∇u = 0 in Ω; � · A∇u = g; ‖Nu‖Lp(@Ω) . ‖g‖Ẇ−1;p(@Ω):
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History: the second-order case

(Kenig, Koch, Pipher, Toro, 2000) If Ω ⊂ R2, 1
" < p <∞, and A is real,

t-independent, but not symmetric, then we can solve

∇ · A∇u = 0 in Ω; u
˛̨
@Ω

= f ; ‖Nu‖Lp(@Ω) . ‖f ‖Lp(@Ω):

(Kenig and Rule, 2009) If Ω ⊂ R2, and if 1 < p < 1 + ", then we can solve

∇ · A∇u = 0 in Ω; u
˛̨
@Ω

= f ; ‖ eN(∇u)‖Lp(@Ω) . ‖∇fi f ‖Lp(@Ω);

∇ · A∇u = 0 in Ω; � · A∇u = g; ‖ eN(∇u)‖Lp(@Ω) . ‖g‖Lp(@Ω):

(Hofmann, Kenig, Mayboroda, Pipher, 2015) If A is not symmetric, then
we can solve

∇ · A∇u = 0 in Ω; u
˛̨
@Ω

= f ; ‖Nu‖Lp(@Ω) . ‖f ‖Lp(@Ω);

∇ · A∇u = 0 in Ω; u
˛̨
@Ω

= f ; ‖ eN(∇u)‖Lp(@Ω) . ‖∇fi f ‖Lp(@Ω):
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History: the higher-order case
(Dahlberg, Kenig, Verchota, 1986) If Ω is a bounded Lipschitz domain
and 2− " < p < 2 + ", then we can solve the problem

∆2u = 0 in Ω; ∇u
˛̨
@Ω

= ˙f ; ‖N(∇u)‖Lp(@Ω) . ‖ ˙f ‖Lp(@Ω):

(Verchota, 1990) If Ω is a bounded Lipschitz domain and
2− " < p < 2 + ", then we can solve the problem

∆2u = 0 in Ω; ∇u
˛̨
@Ω

= ˙f ; ‖N(∇2u)‖Lp(@Ω) . ‖∇fi ˙f ‖Lp(@Ω):

(Pipher and Verchota, 1995) If Ω is a bounded Lipschitz domain and A is
constant, and if 2− " < p < 2 + ", then we can solve the problems

∇m · A∇mu = 0 in Ω; ∇m−1u
˛̨
@Ω

= ˙f ; ‖N(∇m−1u)‖Lp(@Ω) . ‖ ˙f ‖Lp(@Ω);

∇m · A∇mu = 0 in Ω; ∇m−1u
˛̨
@Ω

= ˙f ; ‖N(∇mu)‖Lp(@Ω) . ‖∇fi ˙f ‖Lp(@Ω):

(Verchota, 2005) If 2− " < p < 2 + " then we can solve the biharmonic
Neumann problem

∆2u = 0 in Ω; ṀΩ
A u = ġ ; ‖N(∇2u)‖Lp(@Ω) . ‖ġ‖Lp(@Ω):
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2− " < p < 2 + ", then we can solve the problem

∆2u = 0 in Ω; ∇u
˛̨
@Ω

= ˙f ; ‖N(∇2u)‖Lp(@Ω) . ‖∇fi ˙f ‖Lp(@Ω):

(Pipher and Verchota, 1995) If Ω is a bounded Lipschitz domain and A is
constant, and if 2− " < p < 2 + ", then we can solve the problems

∇m · A∇mu = 0 in Ω; ∇m−1u
˛̨
@Ω

= ˙f ; ‖N(∇m−1u)‖Lp(@Ω) . ‖ ˙f ‖Lp(@Ω);

∇m · A∇mu = 0 in Ω; ∇m−1u
˛̨
@Ω

= ˙f ; ‖N(∇mu)‖Lp(@Ω) . ‖∇fi ˙f ‖Lp(@Ω):

(Verchota, 2005) If 2− " < p < 2 + " then we can solve the biharmonic
Neumann problem

∆2u = 0 in Ω; ṀΩ
A u = ġ ; ‖N(∇2u)‖Lp(@Ω) . ‖ġ‖Lp(@Ω):
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History: the higher-order case
(Verchota, 1996) If Ω ⊂ R2 or Ω ⊂ R3 is a bounded Lipschitz domain and
2− " < p <∞, then we can solve the problem

∇m · A∇mu in Ω; ∇m−1u
˛̨
@Ω

= ˙f ; ‖N(∇m−1u)‖Lp(@Ω) . ‖ ˙f ‖Lp(@Ω):

(Pipher and Verchota, 1992) If Ω ⊂ R2 or Ω ⊂ R3 is a bounded Lipschitz
domain and 1 < p < 2 + ", then we can solve the problem

∆2u = 0 in Ω; ∇u
˛̨
@Ω

= ˙f ; ‖N(∇2u)‖Lp(@Ω) . ‖∇fi ˙f ‖Lp(@Ω):

(Shen, 2006) If Ω ⊂ Rd is a bounded Lipschitz domain and A is constant,
and 2− " < p < 2 + 4=max(0; d − 3) + ", then we can solve the problems

∇m · A∇mu = 0 in Ω; ∇m−1u
˛̨
@Ω

= ˙f ; ‖N(∇m−1u)‖Lp(@Ω) . ‖ ˙f ‖Lp(@Ω):

(Shen, 2006–7) If 1 + max(0; d − 3− ")=(d + 1) < p < 2 + " then we can
solve the problems

∇m · A∇mu = 0 in Ω; ∇m−1u
˛̨
@Ω

= ˙f ; ‖N(∇mu)‖Lp(@Ω) . ‖∇fi ˙f ‖Lp(@Ω);

∆2u = 0 in Ω; ṀΩ
A u = ġ ; ‖N(∇2u)‖Lp(@Ω) . ‖ġ‖Lp(@Ω):
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Our goal

Conjecture (B., Hofmann, Mayboroda)

Let Ω be the region above a Lipschitz graph. Let A be a self-adjoint,
t-independent, bounded elliptic matrix of coefficients.
Then we can solve the Dirichlet problems8>><>>:

∇m · A∇mu = 0 in Ω;

∇m−1u
˛̨
@Ω

= ˙f ;

‖ eN(∇m−1u)‖Lp(@Ω) . ‖ ˙f ‖Lp(@Ω);

8>><>>:
∇m · A∇mu = 0 in Ω;

∇m−1u
˛̨
@Ω

= ˙f ;

‖ eN(∇mu)‖Lp(@Ω) . ‖∇fi ˙f ‖Lp(@Ω);

and the Neumann problems8>>><>>>:
∇m · A∇mu = 0 in Ω;

ṀA
Ωu = ġ ;

‖ eN(∇m−1u)‖Lp(@Ω) . ‖ġ‖Ẇ p
−1(@Ω);

8>><>>:
∇m · A∇mu = 0 in Ω;

ṀA
Ωu = ġ ;

‖ eN(∇mu)‖Lp(@Ω) . ‖ġ‖Lp(@Ω):
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The Rellich identity

Theorem

If A is self-adjoint and t-independent, if Ω = {(x; t) : t >  (x)} is the
domain above a Lipschitz graph, and if u satisfies appropriate bounds, then

‖∇m−1u
˛̨
@Ω
‖Ẇ 1;2(@Ω) . ‖ṀAu‖L2(@Ω):

Proof. ‖∇m−1u
˛̨
@Ω
‖Ẇ 1;2(@Ω) = ‖∇fi∇m−1u

˛̨
@Ω
‖L2(@Ω)

≤ ‖∇mu
˛̨
@Ω
‖L2(@Ω), and

2 Re

ˆ
@Ω
∇m−1@t ū · ṀAu dff = 2 Re

ˆ
Ω
∇m@t ū · A∇mu

=

ˆ
Ω

@

@t
(∇mū · A∇mu) = −

ˆ
Rd−1

∇mu(x;  (x)) · A(x)∇mu(x;  (x)) dx:

So ‖∇mu
˛̨
@Ω
‖2
L2(@Ω) . ‖∇

m−1@tu
˛̨
@Ω
‖L2(@Ω)‖ṀAu‖L2(@Ω).

In the case m = 1, MAu = � · A∇u, so ‖MAu‖L2 . ‖∇1u
˛̨
@Ω
‖L2 .

Careful algebra shows ‖MAu‖L2(@Ω) . ‖u
˛̨
@Ω
‖Ẇ 2

1 (@Ω).
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∇m@t ū · A∇mu

=

ˆ
Ω

@

@t
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‖L2(@Ω)‖ṀAu‖L2(@Ω).

In the case m = 1, MAu = � · A∇u, so ‖MAu‖L2 . ‖∇1u
˛̨
@Ω
‖L2 .

Careful algebra shows ‖MAu‖L2(@Ω) . ‖u
˛̨
@Ω
‖Ẇ 2
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The Green’s formula: harmonic functions

Let EX(Y ) =
cd

|X − Y |d−2
(in Rd) or EX(Y ) = − 1

2ı log|X − Y | (in R2).

Then
−∆EX = ‹X :

So if ∆u = 0 in Ω,

u(X) =

ˆ
Ω
−∆EX u

= −
ˆ
@Ω
� · ∇EX u dff +

ˆ
@Ω
EX � · ∇u dff −

ˆ
Ω
EX ∆u:

We define DΩf (X) =

ˆ
@Ω
� · ∇EX f dff, SΩg(X) =

ˆ
@Ω
EX g dff,

so if ∆u = 0 in Ω then u = −DΩ(u
˛̨
@Ω

) + SΩ(� · ∇u) and

‖N(∇u)‖Lp(@Ω) . ‖N(∇DΩ(u
˛̨
@Ω

))‖Lp(@Ω) + ‖N(∇SΩ(� · ∇u))‖Lp(@Ω).
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Layer potentials

We can generalize layer potentials so that if ∇m · A∇mu = 0 in Ω, then

u(X) = −DA(∇m−1u
˛̨
@Ω

)(X) + SA(ṀA
Ωu)(X):

Therefore,

‖ eN(∇mu)‖L2(@Ω)

. ‖ eN(∇mDA∇m−1u
˛̨
@Ω

)‖L2(@Ω) + ‖ eN(∇mSAṀA
Ωu)‖L2(@Ω):

If ‖ eN(∇mDA ˙f )‖L2(@Ω) . ‖ ˙f ‖Ẇ 2
1 (@Ω), ‖ eN(∇mSAġ)‖L2(@Ω) . ‖ġ‖L2(@Ω),

then ‖ eN(∇mu)‖L2(@Ω) . ‖∇m−1u‖Ẇ 2
1 (@Ω) + ‖ṀA

Ωu‖L2(@Ω)

and by the Rellich identity ‖ eN(∇mu)‖L2(@Ω) . ‖ṀA
Ωu‖L2(@Ω):
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Ωu‖L2(@Ω)

and by the Rellich identity ‖ eN(∇mu)‖L2(@Ω) . ‖ṀA
Ωu‖L2(@Ω):

Ariel Barton The higher-order Neumann problem May 30, 2018 18 / 39



Layer potentials

We can generalize layer potentials so that if ∇m · A∇mu = 0 in Ω, then

u(X) = −DA(∇m−1u
˛̨
@Ω

)(X) + SA(ṀA
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Boundedness of layer potentials and trace theorems

Theorem (B., Hofmann, Mayboroda, 2017)

Suppose that A is elliptic and t-independent. Then we have the estimates

ˆ
Rd

+

|∇m@tSAġ(x; t)|2 t dx dt . ‖ġ‖2
L2(Rd−1);

ˆ
Rd

+

|∇m@tDA ˙f (x; t)|2 t dx dt . ‖∇fi ˙f ‖2
L2(Rd−1) = ‖ ˙f ‖2

Ẇ 2
1 (Rd−1)

:

Theorem (B., Hofmann, Mayboroda)

Suppose that A is elliptic and t-independent. Then we have the estimates

ˆ
Rd−1

eN+(∇mSAġ)(x)2 dx . ‖ġ‖2
L2(Rd−1);ˆ

Rd−1

eN+(∇mDA ˙f )(x)2 dx . ‖∇fi ˙f ‖2
L2(Rd−1) = ‖ ˙f ‖2

Ẇ 2
1 (Rd−1)

:
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The Neumann problem

Theorem (B., Hofmann, Mayboroda)

Let A be a self-adjoint, t-independent, elliptic matrix of coefficients.
Then there is a solution to the L2-Neumann problem8>>>><>>>>:

∇m · A∇mu = 0 in Rd+;
ṀAu = ġ on @Rd+;ˆ

Rd
+

|∇m@tu(x; t)|2 t dx dt +

ˆ
Rd−1

eN+(∇mu)(x)2 dx . ‖ġ‖2
L2(@Rd

+)

that is unique up to adding polynomials of degree m − 1.
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Harmonic layer potentials

Recall: EX(Y ) =
cd

|X − Y |d−2
in Rd and EX(Y ) = − 1

2ı log|X − Y | in R2.

Formally
−∆EX = ‹X :

So if ∆u = 0 in Ω,

u(X) =

ˆ
Ω
−∆EX u

= −
ˆ
@Ω
� · ∇EX u dff +

ˆ
@Ω
EX � · ∇u dff −

ˆ
Ω
EX ∆u:

We define DΩf (X) =

ˆ
@Ω
� · ∇EX f dff, SΩg(X) =

ˆ
@Ω
EX g dff,

so if ∆u = 0 in Ω then u = −DΩ(u
˛̨
@Ω

) + SΩ(� · ∇u).
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Layer potentials and well posedness: C1 domains

Theorem (Fabes, Jodeit, Rivière, 1978)

Let Ω = Ω+ be a bounded C1 domain, and let @Ω+ = @Ω−,
Ω+ ∩ Ω− = ∅. Then we have the bounds

‖N(DΩ’)‖Lp(@Ω) . ‖’‖Lp(@Ω); ‖N(∇DΩ’)‖Lp(@Ω) . ‖’‖Ẇ 1;p(@Ω);

‖N(∇SΩ‚)‖Lp(@Ω) . ‖‚‖Lp(@Ω)

and the formulas

DΩ’
˛̨
@Ω±

= ∓1

2
’+K’; �± · ∇SΩ‚

˛̨
@Ω±

=
1

2
‚ ±K∗‚

where K is compact on Lp(@Ω) and Ẇ 1;p(@Ω), 1 < p <∞.

Corollary Let f ∈ Lp(@Ω). Then there is some ’ ∈ Lp(@Ω) such that
u = DΩ’ satisfies

∆u = 0 in Ω; u
˛̨
@Ω

= f ; ‖Nu‖Lp(@Ω) . ‖f ‖Lp(@Ω):
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Layer potentials and well posedness: Lipschitz domains

Let Ω be a bounded simply connected Lipschitz domain.
(Dahlberg, 1977 and 1979) If 2− " < p <∞, then we can solve

∆u = 0 in Ω; u
˛̨
@Ω

= f ; ‖Nu‖Lp(@Ω) . ‖f ‖Lp(@Ω): (1)

(Jerison and Kenig, 1981) We can solve

∆u = 0 in Ω; u
˛̨
@Ω

= f ; ‖N(∇u)‖L2(@Ω) . ‖f ‖Ẇ 1;2(@Ω);

∆u = 0 in Ω; � · ∇u
˛̨
@Ω

= g; ‖N(∇u)‖L2(@Ω) . ‖g‖L2(@Ω): (2)

(Verchota, 1984) If 1 < p < 2 + ", then we can solve

∆u = 0 in Ω; u
˛̨
@Ω

= f ; ‖N(∇u)‖Lp(@Ω) . ‖f ‖Ẇ 1;p(@Ω) (3)

and the solutions u to the problems (1), (2) and (3) may be written as
layer potentials.
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Jump relations
If Ω = Ω+ = Rd \ Ω− is a bounded Lipschitz domain, and if f and g are
continuous on @Ω, then

∆(DΩf ) = 0 and ∆(SΩg) = 0 in Rd \ @Ω;

DΩf and ∇SΩg extend to functions continuous on Ω+ and Ω−, and

DΩf
˛̨
@Ω+
−DΩf

˛̨
@Ω+

= −f ; �+ · ∇DΩf
˛̨
@Ω+

+ �− · ∇DΩf
˛̨
@Ω−

= 0;

SΩg
˛̨
@Ω+
− SΩg

˛̨
@Ω+

= 0; �+ · ∇SΩg
˛̨
@Ω+

+ �− · ∇SΩg
˛̨
@Ω−

= g:

DΩf

f
f

Ω

g
g
SΩg
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Well posedness and invertibility
Consider the Dirichlet regularity problem

s

∆u = 0 in Ω+; u
˛̨
@Ω+

= f ; ‖N+(∇u)‖Lp(@Ω) . ‖f ‖Ẇ 1;p(@Ω)

;

∆u = 0 in Ω−; u
˛̨
@Ω−

= f ; ‖N−(∇u)‖Lp(@Ω) . ‖f ‖Ẇ 1;p(@Ω):

Suppose that ‖N±(∇SΩg)‖Lp(@Ω) . ‖g‖Lp(@Ω).

(The classic method of layer potentials) Suppose that g 7→ SΩg
˛̨
@Ω

is onto

Lp(@Ω) 7→ Ẇ 1;p(@Ω) with a bounded right inverse:
If f ∈ Ẇ 1;p(@Ω) then f = SΩg

˛̨
@Ω

for some g , ‖g‖Lp(@Ω) . ‖f ‖Ẇ 1;p(@Ω).
Then there is at least one solution to

each of

the regularity problem

s.

(Verchota, 1984) Suppose that we have uniqueness of solutions.
Then SΩ

˛̨
@Ω

is one-to-one Lp(@Ω) 7→ Ẇ 1;p(@Ω) with bounded left inverse:

‖g‖Lp(@Ω) . ‖SΩg
˛̨
@Ω
‖Ẇ 1;p(@Ω) for all g ∈ Lp(@Ω).

Ω

g+
g−

g− g+

f = SΩg
˛̨
@Ω

SΩg
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;

∆u = 0 in Ω−; u
˛̨
@Ω−

= f ; ‖N−(∇u)‖Lp(@Ω) . ‖f ‖Ẇ 1;p(@Ω):

Suppose that ‖N±(∇SΩg)‖Lp(@Ω) . ‖g‖Lp(@Ω).

(The classic method of layer potentials) Suppose that g 7→ SΩg
˛̨
@Ω

is onto
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‖Ẇ 1;p(@Ω) for all g ∈ Lp(@Ω).

Ω

g+
g−

g− g+

f = SΩg
˛̨
@Ω

SΩg

Ariel Barton The higher-order Neumann problem May 30, 2018 25 / 39



Well posedness and invertibility
Consider the Dirichlet regularity problems

∆u = 0 in Ω+; u
˛̨
@Ω+

= f ; ‖N+(∇u)‖Lp(@Ω) . ‖f ‖Ẇ 1;p(@Ω);
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Well posedness and invertibility
(The classic method of layer potentials) Suppose that g 7→ SΩg

˛̨
@Ω

is onto
with a bounded right inverse. Then we have existence of solutions.

(Verchota, 1984) Suppose that we have uniqueness of solutions.
Then SΩ

˛̨
@Ω

is one-to-one with bounded left inverse.

(B., Mayboroda, 2013) Suppose that we have existence of solutions.
Then SΩ

˛̨
@Ω

is onto with bounded right inverse.

Ω

g
g = �+ · ∇u+ + �− · ∇u−

f
f

(B., Mayboroda, 2016) Suppose that g 7→ SΩg
˛̨
@Ω

is one-to-one with a
bounded left inverse. Then there is at most one solution:

u

˛̨
@Ω

+DΩ(u
˛̨
@Ω

)

˛̨
@Ω

= SΩ(� · ∇u)

˛̨
@Ω

so u = −DΩ(u
˛̨
@Ω

) + SΩ((SΩ

˛̨
@Ω

)−1(u
˛̨
@Ω

+DΩ(u
˛̨
@Ω

)
˛̨
@Ω

))
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The Green’s formula: second-order operators
If A is real (Grüter, Widman, 1982; Kenig, Ni, 1985), complex and
satisfies the De Giorgi-Nash-Moser condition (Hofmann, Kim, 2007), or
satisfies the Moser condition (Rosén, 2013) then there is a fundamental
solution EAX(Y ) such that

−∇ · AT∇EAX = ‹X :

Then formally

u(X) = −
ˆ
@Ω
� · AT∇EAX u dff +

ˆ
@Ω
EAX � · A∇u dff −

ˆ
Ω
EAX ∇ · A∇u:

In particular, if ∇ · A∇u = 0 then we expect that

u(X) = −
ˆ
@Ω
� · AT∇EAX u dff +

ˆ
@Ω
EAX � · A∇u dff:

It takes quite a bit of work to show that this is actually true!
(Kenig, Rule, 2009; Alfonseca, Auscher, Axelsson, Hofmann, Kim, 2011;
B., Mayboroda, 2013, 2016; Auscher, Mourgoglou, 2014; Hofmann, Kenig,
Mayboroda, Pipher, 2015; Hofmann, Mayboroda, Mourgoglou, 2015;
Hofmann, Mitrea, Morris, 2015; others)
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Higher order layer potentials

If A has constant coefficients, we can construct the fundamental solution
EAX to

(−1)m∇m · AT∇mEAX = ‹X

using the Fourier transform.
We cound define

DAΩ ˙f (X) =

ˆ
@Ω
ṀAT

Ω EAX · ˙f dff; SAΩġ(X) =

ˆ
@Ω
∇m−1EAX · ġ dff:

(Cohen, Gosselin, 1983/1985; Verchota, 2005; I. Mitrea, M. Mitrea, 2013)

(B., 2016) There is a fundamental solution even for variable coefficients. . .
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The fundamental solution
(Hofmann and Kim, 2007; B., 2016) The (gradient of the) fundamental

solution ∇Y EAX(Y ) is the kernel of the operator ΠA
T

= (−1)m(LT )−1∇m

where Π
AḢ satisfiesˆ

Rd

∇m’ · A∇mΠAḢ =

ˆ
Rd

∇m’ · Ḣ

for all ’ ∈ Ẇm;2(Rd).

Theorem (Lax-Milgram)

Let H be a Hilbert space. Let B : H ×H 7→ C and suppose:

B is bilinear,

|B(v; w)| ≤ Λ‖v‖ ‖w‖,
|B(v; v)| ≥ –‖v‖2.

If T : H 7→ C is a bounded linear operator, then there exists a unique
element uT ∈ H such that T (v) = B(v; uT ), and ‖uT ‖H ≤ 1

–‖T‖H 7→C.
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Another way to write jump relations

Let f , g be nice functions defined on @Ω. Recall that DΩf , SΩg satisfy:

∆(SΩg) = 0 in Ω±; ∆(DΩf ) = 0 in Ω±;

�+ · ∇SΩg + �− · ∇SΩg = g; �+ · ∇DΩf + �− · ∇DΩf = 0;

SΩg
˛̨
@Ω+

= SΩg
˛̨
@Ω−

; DΩf
˛̨
@Ω+

= DΩf
˛̨
@Ω−
− f :

This means thatˆ
@Ω

Tr’g dff =

ˆ
Ω+

∇’ · ∇SΩg +

ˆ
Ω−

∇’ · ∇SΩg =

ˆ
Rd

∇’ · ∇SΩg;

0 =

ˆ
Ω+

∇’ · ∇DΩf +

ˆ
Ω−

∇’ · ∇DΩf =

ˆ
Rd

∇’ · ∇DΩf

and

SΩg ∈ Ẇ 1;1
loc (Rd); DΩf = v − 1ΩF where F , v ∈ Ẇ 1;1

loc (Rd), F
˛̨
@Ω

= f .
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Harmonic layer potentials via the Riesz theorem

Let f , g be nice functions defined on @Ω. Recall that

ˆ
@Ω

Tr’g dff =

ˆ
Rd

∇’ · ∇SΩg; 0 =

ˆ
Rd

∇’ · ∇DΩf

and

SΩg ∈ Ẇ 1;1
loc (Rd); DΩf = v − 1ΩF where F , v ∈ Ẇ 1;1

loc (Rd), F
˛̨
@Ω

= f

so
´
Rd ∇’ · ∇v =

´
Ω∇’ · ∇F .

It is well known that if Ω is a Lipschitz domain then

{Tr F : F ∈ Ẇ 1;2(Rd)} = Ẇ 1=2;2(@Ω); (Ẇ 1=2;2(@Ω))∗ = Ẇ−1=2;2(@Ω);

so if f ∈ Ẇ 1=2;2(@Ω) and g ∈ Ẇ−1=2;2(@Ω), we can construct
v ∈ Ẇ 1;2(Rd) and SΩg ∈ Ẇ 1;2(Rd) via the Riesz representation theorem.
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General single layer potentials via the Lax-Milgram theorem
Let A be bounded and satisfy

<
ˆ
Rd

∇m’ · A∇m’ ≥ –
ˆ
Rd

|∇m’|2 for all ’ ∈ Ẇ 1;2(Rd).

If Ω is a Lipschitz domain, then the boundary trace operator Tr∇m−1 is
bounded Ẇm;2(Rd) 7→ Ẇ 1=2;2(@Ω).

By the Lax-Milgram theorem, if ġ ∈ Ẇ−1=2;2(@Ω), then there is a unique
function SLΩġ ∈ Ẇ 1;2(Rd) such that

ˆ
Rd

∇m’ · A∇mSLΩġ =

ˆ
@Ω

Tr∇m−1’ · ġ dff for all ’ ∈ Ẇ 1;2(Rd).

Then L(SLΩġ) = 0 in Ω+ and Ω−, Tr+∇m−1SLΩġ = Tr−∇m−1SLΩġ , and

〈∇m−1’; Ṁ
+
ASLΩġ+Ṁ

−
ASLΩġ〉@Ω =

ˆ
Ω+

∇m’ ·A∇mSLΩġ+

ˆ
Ω−

∇m’ ·A∇mSLΩġ :
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function SLΩġ ∈ Ẇ 1;2(Rd) such that

ˆ
Rd

∇m’ · A∇mSLΩġ =
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General double layer potentials via the Lax-Milgram
theorem
Let ˙f = Tr∇m−1F for some F ∈ Ẇm;2(Ω). Let DAΩ ˙f satisfy
(DAΩ ˙f + 1ΩF ) ∈ Ẇm;2(Rd),

ˆ
Rd

∇m’ · A∇m(DAΩ ˙f + 1ΩF ) =

ˆ
Ω
∇m’ · A∇mF:

DAΩ is well defined. If Tr∇m−1F = Tr∇m−1 eF , then

ˆ
Rd

∇m’ · A∇m(DAΩ ˙f + 1Ω
eF ) =

ˆ
Ω
∇m’ · A∇m eF

and (1ΩF − 1Ω
eF ) ∈ Ẇm;2(Rd):

1ΩF − 1Ω
eF =

(
F − eF in Ω

0 in Rd \ Ω:

So (DAΩ ˙f + 1Ω
eF ) ∈ Ẇm;2(Ω).
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Properties of layer potentials
We have constructed layer potentials via the Lax-Milgram theorem.
Let ġ ∈ Ẇ−1=2;2(@Ω), ˙f ∈ ẆA2

m−1;1=2(@Ω) ( Ẇ 1=2;2(@Ω).

The conditions L(DAΩ ˙f ) = 0, L(SLΩġ) = 0 and the jump relations
follow from the definition.
Let Lu = 0 in Ω. Then DAΩ(Tr∇m−1u) = −1Ωu + v , whereˆ

Rd

∇m’ · A∇mv =

ˆ
Ω
∇m’ · A∇mu =

ˆ
@Ω

Tr∇m−1’ · ṀΩ
A u dff

=

ˆ
Rd

∇m’ · A∇mSLΩ(ṀΩ
A u)

so we have the Green’s formula 1Ωu = −DAΩ(Tr∇m−1u) + SLΩ(ṀΩ
A u).

Boundary value problems are well posed if and only if boundary values
of layer potentials are invertible.
We can derive the formulas involving ELX using the connection
between ELX and L−1.
We can derive adjoint relations: (ṀΩ

ADAΩ)∗ = ṀΩ
A∗DA

∗
Ω ,

(Tr∇m−1SL)∗ = Tr∇m−1SL∗ , (Tr+∇m−1DAΩ)∗ = −Ṁ−A∗SL
∗
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The Neumann subregularity problem

Theorem (B., Hofmann, Mayboroda)

Let A be a self-adjoint, t-independent, elliptic matrix of coefficients.
Then there is a solution to the Ẇ−1;2-Neumann problem8>>>><>>>>:

∇m · A∇mu = 0 in Rd+;
ṀAu = ġ on @Rd+;ˆ

Rd
+

|∇mu(x; t)|2 t dx dt +

ˆ
Rd−1

eN+(∇m−1u)(x)2 dx . ‖ġ‖2
Ẇ 2

−1(@Rd
+)

that is unique up to adding polynomials of degree m − 1.
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The Lp problems
Recall:
(Pipher and Verchota, 1995) If Ω is a bounded Lipschitz domain and A is
constant, and if 2− " < p < 2 + ", then we can solve the problems

∇m · A∇mu = 0 in Ω; ∇m−1u
˛̨
@Ω

= ˙f ; ‖N(∇m−1u)‖Lp(@Ω) . ‖ ˙f ‖Lp(@Ω);

∇m · A∇mu = 0 in Ω; ∇m−1u
˛̨
@Ω

= ˙f ; ‖N(∇mu)‖Lp(@Ω) . ‖∇fi ˙f ‖Lp(@Ω):

(Shen, 2006) For constant coefficient operators, using well posedness of
the Dirichlet problem with L2(@Ω) and Ẇ 1;2(@Ω) boundary data, we can
establish well posedness of the Dirichlet problem with boundary data in
Lp(@Ω), 2 < p < 2 + 4

max(0;d−3) + ".
By duality we can establish well posedness for boundary data in
Ẇ 1;p(@Ω), 1 + max(0; d−3

d+1 − ") < p < 2.

(Shen, 2007) Similarly, we can solve the biharmonic Neumann problem
with boundary data in Ẇ−1;p(@Ω), 2 < p < 2 + 4

max(0;d−3) + ", and in

Lp(@Ω), 1 + max(0; d−3
d+1 − ") < p < 2.
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The Lp problems

Conjecture

Let A be a self-adjoint, t-independent, elliptic matrix of coefficients.
Then there are solutions to the Lp-Neumann problem,
1 + max(0; d−3

d+1 − ") < p < 2 + ",

(
∇m · A∇mw = 0 in Rd+; ṀAw = ġ on @Rd+;

‖A+
2 (t∇m@tw)‖Lp(Rd−1) + ‖ eN+(∇mw)‖Lp(Rd−1) . ‖ġ‖Lp(Rd−1)

and the Ẇ−1;p-Neumann problem, 2− " < p < 2 + 4
max(0;d−3) + ",8<: ∇m · A∇mv = 0 in Rd+; ṀAv = ḣ on @Rd+;

‖A+
2 (t∇mv)‖Lp(Rd−1) + ‖ eN+(∇m−1v)‖Lp(Rd−1) . ‖ḣ‖Ẇ−1;p(Rd−1)

that are unique up to adding polynomials.
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Open questions

We would like to solve the Dirichlet problem8>>>><>>>>:
∇m · A∇mu = 0 in Rd+;
∇m−1u = ˙f on @Rd+;ˆ

Rd
+

|∇m@tu(x; t)|2 t dx dt +

ˆ
Rd−1

eN+(∇mu)(x)2 dx . ‖ ˙f ‖2
Ẇ 2

1 (@Rd
+)
:

We would like to work with systems (Lu)j =
NX
k=1

X
|¸|=|˛|=m

@¸(Ajk¸˛@
˛u).

Ω
We would like to solve boundary value problems in
Lipschitz domains rather than Rd+.

We would like to look at boundary value problems with lower order terms
∇m · A∇mu +∇m−1 · B∇mu +∇m · C∇m−1u + · · · = 0.
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Thank you!

Happy birthday, Steve!
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