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Second order differential equations: A = 0, + 0,y + . ..

The force required to bend a string under tension is proportional to the
second derivative of its displacement, GXXh

I n |

atth = Caxxh axxh = Ccp 0xxh =0

The force required to bend a membrane under tension is proportional to
Ah = Oyxh + 0y, h.

atth = cAh
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Harmonic boundary value problems

problem

There is an extensive theory for the harmonic Dirichlet

{Au:O in Q,

u=1f on0Q
and the Neumann problem

{ Au=0 in{Q,

v-Vu=g on 0f.
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Second order boundary value problems

Suppose the matrix A is uniformly positive definite and bounded:
Rev - A(X)V > A|7)?, |A(X)| <A forall X e RY, v eCq.

There is an extensive theory for the second order elliptic

Dirichlet problem
V-AVu=0 inQ,
u=7*F on 0N

and the Neumann problem

V- -AVu=0 inQ,
v-AVu=g on 09.
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Higher order differential equations

The force required to bend a thin elastic rod is proportional to the fourth
derivative of its displacement, Oyxxxh.

The force required to bend a thin elastic plate is proportional to
A2h = 8yx(Oxxh) + Bxy (205, h) + 8, (8y, h).

A\
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Higher order differential equations

The force required to bend a thin elastic rod is proportional to the fourth
derivative of its displacement, Oyxxxh.

AN

The force required to bend a thin elastic plate is proportional to
A2h = 8yx(Oxxh) + Bxy (205, h) + 8, (8y, h).

\

e

(Euler-Bernoulli beam equation)

-

The force required to bend an
inhomogeneous thin elastic rod is proportional to the fourth derivative of
its displacement Oy (E(x) I(x) Oxxh).
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Higher order boundary value problems

We are interested in higher-order differential equations such as the
biharmonic equation (in RY)

d d

Nu=V>Vu=> > 0j(dxu)=0
j=1k=1

or more generally

VT AVTu= > 8%(AqpdPu) = 0.
lau|=1Bl=m
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Higher order boundary value problems

We are interested in higher-order differential equations such as the
biharmonic equation (in RY)

d d
Nu=V>Vu=> > 0j(dxu)=0
j=1k=1

or more generally

VT AVTu= > 8%(AqpdPu) = 0.
|oe|=|B]=m
We are interested in the Dirichlet problem
A%u=0 inQ,
u=fFf v-Vu=g on 0f.
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Higher order boundary value problems

We are interested in higher-order differential equations such as the
biharmonic equation (in R9)

d d
A2y =V?. V= Z Z 0jk(ajku) =0
j=1k=1

or more generally

VT AVTu = Y 8%(AspdPu) =0.
loe|=[Bl=m
We are interested in the Dirichlet problem
A%u=0 inQ,
Vu=1f on 8.
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Higher order boundary value problems

We are interested in higher-order differential equations such as the
biharmonic equation (in RY)

d d
Nu=V>Vu=> > 0j(dxu)=0
j=1k=1

or more generally

VT-AVTu= Y 0%(Aepdfu) =0.
|oe|=|B]=m
We are interested in the Dirichlet problem
V" -AV"u=0 inQ,
Vmly=+f on dQ.
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Higher order Neumann boundary values

In the second-order case V - AVu = 0, the Neumann boundary values of u
are v - AV .
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Higher order Neumann boundary values

In the second-order case V - AVu = 0, the Neumann boundary values of u
are v - AV .

Notice that if V™ - AV™u =0 in Q, then

/ VT - AV"u
Q

depends only on V" o] .
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Higher order Neumann boundary values

In the second-order case V - AVu = 0, the Neumann boundary values of u
are v - AV .

Notice that if V™ - AV™u =0 in Q, then

/ VT - AV"u
Q

depends only on V’"‘ltp|aQ. So
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Higher order Neumann boundary values

In the second-order case V - AVu = 0, the Neumann boundary values of u
are v - AV .

Notice that if V™ - AV™u =0 in Q, then

/ VT - AV"u
Q

depends only on V’"‘ltp|aQ. So

/V’"cp-AV’"u:/ V’"*ltp-/\.ﬂéuda
Q o0

for some Méu.
If m=1then Mju=v-AVu.
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Higher order Neumann boundary values

In the second-order case V - AVu = 0, the Neumann boundary values of u
are v - AV .
Notice that if V™ - AV™u =0 in Q, then

/ VT - AV"u
Q
depends only on V’"‘ltp|aQ. So
/ VT - AVTy = / vhlp. Méu do
Q el

for some Méu.
If m=1then Mju=v-AVu.

A free boundary corresponds to Méu =0.
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Higher order boundary value problems
We are interested in the Dirichlet problems

VT -AV"u=0in Q,
Vm_lu|6§2 =f,
IN(V™ 2 0) 1o o) S 11 llir(a0).
and the Neumann problems
VT -AV"u=0in Q,
Mau = g,
IN(V™0)| 1o 00) S 1€l (o0)-

Nu(X) = sup{|u(Y)| : |X — Y| < (1 + a)dist(Y, Q)}
May 30,2018 830



Higher order boundary value problems
We are interested in the Dirichlet problems

VT . AV"yu=0in €, VT . AV"yu=0in €,
vl = f, vl =1,
IN(V™ 2 0) 1o o) S 11 llir(a0). IN(V™0)|1r00) S V2]l Lo(a0).
and the Neumann problems
V™. AV"u=0in €, VT . AV"yu=0in €,
Mé“ =g, Méu =g,
IN(V™ )| o) S 1Elie o0y UIIN(V ™)l Lra0) S lIE ] Lron)-

Nu(X) = sup{|u(Y)| : |X — Y| < (1 + a)dist(Y, 2)}

May 30, 2018

8 /39



Regularity of coefficients
(Caffarelli, Fabes, Kenig, 1981) There is a real, symmetric matrix A,
continuous in B C R?, such that

V- -AVu=20in B, u="f on GB, ||NU||LP(GB) ,s HfHLP(aB)

is ill-posed for all 1 < p < o0.
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Regularity of coefficients
(Caffarelli, Fabes, Kenig, 1981) There is a real, symmetric matrix A,
continuous in B C R?, such that
V-AVu=0in B,
is ill-posed for all 1 < p < o0.

v-AVu=g on dB,

IN(VU)llLraB) S llgllir(a)
(x, t) = (x, t — P(x))
/\

A/

h

If Au=0, then V- AyVii = 0, where

Ay(x, t) = ( !

V(x)
V()" 1+ [VY(x)P
Notice Ay(x, t) is real, symmetric, and t-independent.
Ariel Barton
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t-independence and Lipschitz domains

From now on we will work with equations of the form

VT AVTu= Y 0%(AxpdPu) =0

oe|=|B|=m
where the coefficient matrix A is elliptic and t-independent, that is,

A(x,t) = A(x,s) = A(x) forall x e R andalls, t € R.
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t-independence and Lipschitz domains

From now on we will work with equations of the form

VT AVTu= Y 0%(AxpdPu) =0
|oe|=|Bl=m

where the coefficient matrix A is elliptic and t-independent, that is,

A(x,t) = A(x,s) = A(x) forall x e R andalls, t € R.
We will work in Lipschitz graph domains

where Vi € L®(R?1).
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History: the second-order case

(Jerison and Kenig, 1981) If A is real-valued, t-independent and
symmetric, then for all 2 — £ < p < co we can solve

V- -AVu=0in Q, U|aQ = f, ||NU||Lp(aQ) 5 ||f||Lp(6Q).
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History: the second-order case

(Jerison and Kenig, 1981) If A is real-valued, t-independent and
symmetric, then for all 2 — & < p < co we can solve

V- -AVu=0in Q, U|aQ = f, ||NU||Lp(aQ) 5 ||f||Lp(6Q).

(Kenig and Pipher, 1993) If A is t-independent, real-valued and
symmetric, and if 1 < p < 2+ ¢, then we can solve
V-AVu=0inQ  ulyg =1 [N(Vu)|iren) S IV-fllLron).

V-AVu=0inQ, v -AVu=g, [N(Vu)|ro0) S glron)
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History: the second-order case

(Jerison and Kenig, 1981) If A is real-valued, t-independent and
symmetric, then for all 2 — & < p < co we can solve

V- -AVu=0in Q, u|aQ = f, ||NU||Lp(aQ) 5 ||f||Lp(6Q).

(Kenig and Pipher, 1993) If A is t-independent, real-valued and
symmetric, and if 1 < p < 2+ ¢, then we can solve
V-AVu=0inQ  ulyg =1 [N(Vu)|iren) S IV-fllLron).
V-AVu=0inQ, v -AVu=g, [N(Vu)lrrae) S llgllLroq)-
(Auscher and Mourgoglou, 2014) If A is t-independent, real-valued and
symmetric, and if 2 — g < p < 00, then we can solve

V-AVu=0inQ, v -AVu=g, [Nullraa) < lIglli-1r00)-
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History: the second-order case

(Kenig, Koch, Pipher, Toro, 2000) If Q C R2?, % < p <00, and A is real
t-independent, but not symmetric, then we can solve

V- AVu=0inQ, ulyg="F |[INulie@a) S |Iflleon)-

(Kenig and Rule, 2009) If Q C R?, and if 1 < p < 1+¢, then we can solve
V-AVu=0inQ, uly,="F [N(Vu)lre) S IVFllean).

V-AVu=0inQ, v -AVu=g, [N(Vu)|iron) S llgllieon)-
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History: the second-order case

(Kenig, Koch, Pipher, Toro, 2000) If Q C R2?, % < p < o0, and A is real,
t-independent, but not symmetric, then we can solve

V-AVu=0inQ, ulyg =" [Nulltraa) < lIfllLron)-

(Kenig and Rule, 2009) If Q C R?, and if 1 < p < 1+¢, then we can solve

V-AVu=0inQ,  ulyg =1, [IN(VU)|iren) S IV-fllLron).
V- -AVu=0inQ, v -AVu=g, [[N(Vu)llirea) S llgllro0)-

(Hofmann, Kenig, Mayboroda, Pipher, 2015) If A is not symmetric, then
we can solve

V- -AVu=0in Q, U‘BQ = f, HNUHLp(aQ) 5 Hf“Lp(aQ),

V. AVu=0inQ ulg=f [R(V0)lwea) S IVeFlleon).
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History: the higher-order case

(Dahlberg, Kenig, Verchota, 1986) If Q is a bounded Lipschitz domain
and 2 — g < p < 2+ ¢, then we can solve the problem

Au=0inQ, Vul,o="F [NVl S IIFlls@n)-
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History: the higher-order case

(Dahlberg, Kenig, Verchota, 1986) If Q is a bounded Lipschitz domain
and 2 — g < p < 2+ ¢, then we can solve the problem

A’u=0inQ, Vul,o = f, IN(VU)lran) S HfHLp(aQ).
(Verchota, 1990) If Q is a bounded Lipschitz domain and
2 —g < p<2+e¢g, then we can solve the problem

Au=0inQ, Vul,,=F [INV?)|e60) S IIVrFllieoa)-
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History: the higher-order case
(Dahlberg, Kenig, Verchota, 1986) If Q is a bounded Lipschitz domain
and 2 — g < p < 2+ ¢, then we can solve the problem

Nu=0inQ, Vul,,=F |[INVU)|ree) S Iflleon)-

(Verchota, 1990) If Q is a bounded Lipschitz domain and
2 — g < p < 2+¢, then we can solve the problem

Au=0inQ, Vul,,=F [INV?)|e60) S IIVrFllieoa)-

(Pipher and Verchota, 1995) If Q is a bounded Lipschitz domain and A is
constant, and if 2 — £ < p < 2+ ¢, then we can solve the problems

VT AVTu=0inQ, V7™l =f, [NV 0)llean) S I lliecan).

V™AV u=0inQ, V7" lul,g =f, [IN(V"0)l|ea) S IV-flLe(an)-
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History: the higher-order case

(Dahlberg, Kenig, Verchota, 1986) If Q is a bounded Lipschitz domain
and 2 — g < p < 2+ ¢, then we can solve the problem

Nu=0inQ, Vul,,=F |[INVU)|ree) S Iflleon)-

(Verchota, 1990) If Q is a bounded Lipschitz domain and
2 — g < p < 2+¢, then we can solve the problem

Au=0inQ, Vul,,=F [INV?)|e60) S IIVrFllieoa)-

(Pipher and Verchota, 1995) If Q is a bounded Lipschitz domain and A is
constant, and if 2 — £ < p < 2+ ¢, then we can solve the problems

VT AVTu=0inQ, V7™l =f, [NV 0)llean) S I lliecan).
V™ AVTu=0inQ, V" lul g =1 [IN(V"0)l|ea) S 1IVFllLe(an)-

(Verchota, 2005) If 2 — &€ < p < 2 + ¢ then we can solve the biharmonic
Neumann problem

Au=0inQ, Miu=g, [IN(V?0)|ir0) S lEllLeon)-
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History: the higher-order case
(Verchota, 1996) If Q C R? or Q C R3 is a bounded Lipschitz domain and
2 — g < p < 00, then we can solve the problem

VT AV uin Q0 VTl = £ [NV )| een) S 1 lleeon)-
(Pipher and Verchota, 1992) If Q C R? or Q C R3 is a bounded Lipschitz
domain and 1 < p < 2 + ¢, then we can solve the problem

A’u=0inQ, Vul,g=Ff, [IN(V?0)llren) S IV-fllLre0)-
(Shen, 2006) If Q C R9 is a bounded Lipschitz domain and A is constant,
and 2 —eg < p < 2+4/max(0,d — 3) + ¢, then we can solve the problems

VAV =0in Q, VT |y = f, [NV ) ean) S NIFllLeen)-
(Shen, 2006-7) If 1 + max(0,d —3 —¢)/(d + 1) < p < 2 + € then we can
solve the problems
VAV =0in Q, VT 0 = £, [N(V0) | eea) S IV llren),

Au=0inQ, Miu=g, [IN(V?0)|ir0) S lEllLeon)-
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Our goal

Conjecture (B., Hofmann, Mayboroda)

Let Q be the region above a Lipschitz graph. Let A be a self-adjoint,
t-independent, bounded elliptic matrix of coefficients.
Then we can solve the Dirichlet problems

V" .AV"u =0 in €, V" .AV"u =0 in(Q,
m—1 - m—1 5
\Y4 u|aQ =i, \Y4 u|6Q =1,
IN(Y™ )| r(a) S 1Iflleo0). IN(V™u)|ea0) S V£ lLr(a0).

and the Neumann problems

V" . AV"u =0 in 9, V" .AV"u =0 in(Q,
Méu =g, Méu =g,
INCY™ " u)lleon) S €l (a0

IN(V™u)|e(a0) S I1£]lLeo0)-
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The Rellich identity

Theorem

If A is self-adjoint and t-independent, if Q = {(x, t) : t > ¥(x)} is the
domain above a Lipschitz graph, and if u satisfies appropriate bounds, then

1Vl oy S IMatllizcoa)-
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The Rellich identity
Theorem

If A is self-adjoint and t-independent, if Q = {(x, t) : t > ¥(x)} is the
domain above a Lipschitz graph, and if u satisfies appropriate bounds, then

1Vl oy S IMatllizcoa)-

Proof. vaflu’aQHWLz(aQ) = Hv‘rvmilu’aQHB(GQ)

<IV™u| 50l 260
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The Rellich identity

Theorem

If A is self-adjoint and t-independent, if Q = {(x, t) : t > ¥(x)} is the
domain above a Lipschitz graph, and if u satisfies appropriate bounds, then

1Vl oy S IMatllizcoa)-

Proof. ||Vm71u’aQHW1,2(aQ) = Hv‘rvmilu’aQHB(GQ)

<Vl 50 lli2(00). and
2Re/ \VALEF W MAuda:2Re/ V70:i- AV"u
aQ Q

_ / %(V’”U-Avmu):— Viulx, $(x)) - Ax)V"u(x, $(x)) dx.
Q Rd-1

Ariel Barton The higher-order Neumann problem

May 30, 2018 16 / 39



The Rellich identity

Theorem

If A is self-adjoint and t-independent, if Q = {(x, t) : t > ¥(x)} is the
domain above a Lipschitz graph, and if u satisfies appropriate bounds, then

1Vl oy S IMatllizcoa)-

Proof. va 1u’aQHW12 (0Q) = Hv vm u’aQHB(GQ)

<Vl 50 lli2(00). and
2Re/ \VALEF W MAuda:2Re/ V70:i- AV"u
aQ Q

— [ 5ma- AT =~ [ TG - ATl 9() d

Rd-1

So IV u| g 17200y S IV 0ctl o [l 200 | Maull 2o -

Ariel Barton The higher-order Neumann problem

May 30, 2018 16 / 39



The Rellich identity

Theorem

If A is self-adjoint and t-independent, if Q = {(x, t) : t > ¥(x)} is the
domain above a Lipschitz graph, and if u satisfies appropriate bounds, then

1Vl oy S IMatllizcoa)-

Proof. va 1u’aQHW12 (69Q) = Hv v u’aQHL2(GQ)
<Vl 50 lli2(00). and

2 Re/ V™ 18,i- Maudo =2 Re/ V70:i- AV"u
o0 Q
= / 2(Vmﬁ AVTY) = — [ VTu(x,P(x)) - A(x)VMu(x, P(x)) dx
q Ot Rd—1

So IV u| g 17200y S IV 0ctl o [l 200 | Maull 2o -
In the case m =1, Mau = v - AV, so [|[Maul| 2 S IV ul 50l 2.
Careful algebra shows [[Maull2(a0) S Hu|69||W12(6S2)'
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The Green's formula: harmonic functions

Let Ex(Y) = |d-2 (in RY) or Ex(Y) = —% log|X — Y| (in R?).

T XY
Then
—AEx = 6x.
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The Green's formula: harmonic functions

Cd

RY) or Ex(Y) = —% log|X — Y| (in R?).

Then
—AEx = 6x.

Soif Au=20in €,

/ —AExu

——/ V- VExud0+/ Exu-Vuda—/EXAu.
onN onN Q
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The Green's formula: harmonic functions

Let Ex(Y) = ———<—— (in R) or Ex(Y) = — 5= log|X — Y| (in R2),

(X = Y=
Then
—AEx = 6x.

Soif Au=20in €,

/ —AExu
——/ V- VExud0+/ Exu-Vuda/EXAu.
onN onN Q

We define Dqf (X) = / v-VEx fdo, Sqg(X)= / Ex gdo,
oN oN

so if Au=0in Q then u= —Dq(ul,,) + Sa(v - Vu)
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The Green's formula: harmonic functions

Let Ex(Y) = ———<—— (in RY) or Ex(Y) = —5& log|X — Y| (in R?).

(X = Y=
Then
—NAEx =x.

Soif Au=20in €,

/ —AExu
——/ V- VExud0+/ Exu-Vuda/EXAu.
onN onN Q

WedeﬁneDQf(X):/ v-VEx fdo, SQg(X):/ Ex gdo,
oN oN

so if Au=0in Q then u= —Dq(ul,,) + Sa(v - Vu) and
IN(V)llean) S IN(VDa(ulg0))llLean) + IN(VSa(y - Vu))llean)-
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Layer potentials

We can generalize layer potentials so that if V™ - AV™u =0 in Q, then

u(X) = =DV u| o) (X) + SAMEu)(X).
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Layer potentials

We can generalize layer potentials so that if V™ - AV™u =0 in Q, then
u(X) = =DV ul10)(X) + SAMEu)(X).

Therefore,

IN(V™ )| 200
SINVTDAY ™| 02 aq) + IN(VTSAMG U) 12(a0)-
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Layer potentials

We can generalize layer potentials so that if V™ - AV™u =0 in Q, then
u(X) = =DV ul10)(X) + SAMEu)(X).

Therefore,

IN(V™ )| 200
SINVTDAY ™| 02 aq) + IN(VTSAMG U) 12(a0)-

If  [N(V™DAF)1200) < \|f||W12(6Q), IN(V™S28) 1 200) S 1€l 2(00).
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Layer potentials

We can generalize layer potentials so that if V™ - AV™u =0 in Q, then
u(X) = =DV ul10)(X) + SAMEu)(X).

Therefore,

IN(V™ )| 200
SINVTDAY ™| 02 aq) + IN(VTSAMG U) 12(a0)-

If  [N(V™DAF)1200) < Hf”le(aQ): IN(V™S28) 1 200) S 1€l 2(00).

then IN(V™u)ll200) S IV ullizgony + IMaulli2e0)
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Layer potentials

We can generalize layer potentials so that if V™ - AV™u =0 in Q, then
u(X) = =DAV™ Lul ) (X) + SAMEu)(X).

Therefore,

IN(V™ )| 200
SINVTDAY ™| 02 aq) + IN(VTSAMG U) 12(a0)-

If  [N(V™DAF)1200) < \|f||wlz(ag): IN(V™S28) 1 200) S 1€l 2(00).
then IN(V™u)ll200) S IV ullizgony + IMaulli2e0)

and by the Rellich identity ||I\~I(Vmu)||,_z(39) 5 ||Méu||L2(aQ).
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Boundedness of layer potentials and trace theorems

Theorem (B., Hofmann, Mayboroda, 2017)
Suppose that A is elliptic and t-independent. Then we have the estimates

17084, )7  dx d S lquasy
+

W2(RI-1)*

Rd|Vm6tDAf(x, t)|* tdxdt S (Vo fll72gary = I3
+
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Boundedness of layer potentials and trace theorems

Theorem (B., Hofmann, Mayboroda, 2017)
Suppose that A is elliptic and t-independent. Then we have the estimates

17084, )7  dx d S lquasy
+

ma A 2 (12 _ 1112
/Ri|v 0D f(x, t)|“tdxdt < ||V.,f||L2(Rd_1) = ||f||W12(Rd_1)'

Theorem (B., Hofmann, Mayboroda)
Suppose that A is elliptic and t-independent. Then we have the estimates

/ N (V™SA8)(x)? dx < (1€ 132 gam1y.
Rd—l

_ i o
/Rdl N (VDAY ()2 dx S 1V F 22qga-y = 11132 ga0msy:

v
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The Neumann problem

Theorem (B., Hofmann, Mayboroda)

Let A be a self-adjoint, t-independent, elliptic matrix of coefficients.
Then there is a solution to the L?-Neumann problem

V™. AV™y =0 inRY,
MAu =g on ORY,

[ IV dcat, OF e+ [ AT dx S el oms
+

that is unique up to adding polynomials of degree m — 1.

Ariel Barton The higher-order Neumann problem
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Harmonic layer potentials

Recall: Ex(Y) = ‘X_C# in R? and Ex(Y) = —5 log|X — Y| in R2.
Formally
—AEx = 0x.

Soif Au=0in Q,
u(X) = / —AExu
Q

o0

EXU-VudG/ Ex Au.
oQ

Q

We define Dqf (X) = /

v-VEx fdo, SQg(X):/ Ex g do,
o0 o

so if Au=0in Q then u= —Dq(ul|,,) + Sa(v - Vu).
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Layer potentials and well posedness: C! domains
Theorem (Fabes, Jodeit, Riviere, 1978)
Let Q = Q. be a bounded C' domain, and let 8, = 8Q_,
Q. NQ_ =0. Then we have the bounds
IN(Daw)llro0) S ll@llieea).  IN(VDap)lieea) S lellieoa),
IN(VSa)llra0) S 1V]lLe(an)

and the formulas

1 1
Dawlsq, = Foet Ko, v VSay|yg, = ST+ K*y

where K is compact on LP(0Q) and W''P(6Q), 1 < p < co.

Corollary Let f € LP(02). Then there is some ¢ € LP(0Q2) such that
u = Dq satisfies
Au=0inQ, ul,o="Ff |[Nullrea) S IIfllieeo)-
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Layer potentials and well posedness: Lipschitz domains

Let 2 be a bounded simply connected Lipschitz domain.
(Dahlberg, 1977 and 1979) If 2 — & < p < oo, then we can solve

Au=0inQ, ul,o="F [Nullra) S IIfllroo)- (1)
(Jerison and Kenig, 1981) We can solve
Bu=0inQ uoy=F [NVWllizen) S IFlineen,
Au=0inQ, v -Vul,,=g, [N(Vu)liz0) < llgllzen)-  (2)
(Verchota, 1984) If 1 < p < 2+ ¢, then we can solve
Au=0inQ ulpg=F INTDlen) S Flimey  G)

and the solutions u to the problems (1), (2) and (3) may be written as
layer potentials.
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Jump relations

If Q=Q, =R\ Q_ is a bounded Lipschitz domain, and if f and g are
continuous on 0%, then

A(Dqf) =0 and A(Sqg) =0 in R\ 89,
Dqf and VSqg extend to functions continuous on Q. and Q_, and
DQf|aQ+ — DQf|aQ+ =—f, vy VDQf‘69+ +v_ - VDQf!aQ_ =0,

Sﬂg|6Q+ _SQg|aQ+ =0, vy - vsﬂg|aﬂ+ +v_ - vsﬂg|697 =8

Ariel Barton
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Well posedness and invertibility
Consider the Dirichlet regularity problem

Au=0inQy, ulyy =Ff  [N(Vu)llea0) S Ifllisogon)

Suppose that [|[N+(VSag)llra0) S llgllLeaq)-
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Well posedness and invertibility
Consider the Dirichlet regularity problem

Au=0inQp, ulyg =Ff [INo(VU)lleer) S Ifllvire(an)

Suppose that [|[N+(VSag)llra0) S llgllLeaq)-
(The classic method of layer potentials) Suppose that g — Sgg!aﬂ is onto

LP(6Q2) WLP(8Q) with a bounded right inverse:
If f € WLP(6RQ) then f = SQg|aQ for some g, ||gllLp(a0) S ||fHW1,,,(69).
Then there is at least one solution to the regularity problem
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Well posedness and invertibility
Consider the Dirichlet regularity problems

Au=0inQp, ulyo =F [IN((V)llean) S I1flliean).
Au=0inQ_, U}GQ, =f, [IN-(Vu)|lLr(aq) < ”fHV'VlvP(aQ)'

Suppose that [[N+(VSag)llir(a) < 18llLe(00)-

(The classic method of layer potentials) Suppose that g — Sgg!aQ is onto
LP(8RQ) — W1P(Q) with a bounded right inverse:

If f € WhP(8Q) then f = Sqag|,, for some g, [|g]|Lr(ag) S 1 lvi1e0)-
Then there is at least one solution to each of the regularity problems.

(Verchota, 1984) Suppose that we have uniqueness of solutions.
Then Sq,, is one-to-one LP(8Q) — W'P(8Q) with bounded left inverse:

Igllteen) < IS8 ] lviie(aq) for all g € LP(8%2).

Ariel Barton The higher-order Neumann problem May 30, 2018 25 /39



Well posedness and invertibility
Consider the Dirichlet regularity problems

Au=0inQp, ulyo =F [IN((V)llean) S I1flliean).
Au=0inQ_, U}GQ, =f, [IN-(Vu)|lLr(aq) < ”fHV'VlvP(aQ)'

Suppose that [|N.(VSag)lliro) S llgllran)-

(The classic method of layer potentials) Suppose that g — Sgg!aQ is onto
LP(8RQ) — W1P(Q) with a bounded right inverse:

If f € WhP(8Q) then f = Sqag|,, for some g, [|g]|Lr(ag) S 1 lvi1e0)-
Then there is at least one solution to each of the regularity problems.

(Verchota, 1984) Suppose that we have uniqueness of solutions.
Then Sq,, is one-to-one LP(8Q) — W'P(8Q) with bounded left inverse:

Igllteen) < IS8 ] lviie(aq) for all g € LP(8%2).

SQg|aQ

“«-=== ————>
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Well posedness and invertibility

(The classic method of layer potentials) Suppose that g — 89g|69 is onto
with a bounded right inverse. Then we have existence of solutions.

(Verchota, 1984) Suppose that we have uniqueness of solutions.
Then SQ]aQ is one-to-one with bounded left inverse.
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Well posedness and invertibility

(The classic method of layer potentials) Suppose that g — 89g|69 is onto
with a bounded right inverse. Then we have existence of solutions.

(Verchota, 1984) Suppose that we have uniqueness of solutions.
Then SQ]aQ is one-to-one with bounded left inverse.

(B., Mayboroda, 2013) Suppose that we have existence of solutions.
Then SQ|6Q is onto with bounded right inverse.
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Well posedness and invertibility

(The classic method of layer potentials) Suppose that g — Sgg\aQ is onto
with a bounded right inverse. Then we have existence of solutions.

(Verchota, 1984) Suppose that we have uniqueness of solutions.
Then SQ]aQ is one-to-one with bounded left inverse.

(B., Mayboroda, 2013) Suppose that we have existence of solutions.
Then SQ|aQ is onto with bounded right inverse.

=vy-Vuy+v_-Vu_

€« ——

————>

Q
(B., Mayboroda, 2016) Suppose that g — Sqg|, is one-to-one with a
bounded left inverse. Then there is at most one solution:

u + DQ(U’aQ) =Sa(v-Vu)
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Well posedness and invertibility

(The classic method of layer potentials) Suppose that g — Sgg\aQ is onto
with a bounded right inverse. Then we have existence of solutions.

(Verchota, 1984) Suppose that we have uniqueness of solutions.
Then SQ]aQ is one-to-one with bounded left inverse.

(B., Mayboroda, 2013) Suppose that we have existence of solutions.
Then SQ|aQ is onto with bounded right inverse.

=vy-Vuy+v_-Vu_

€« ——

————>

Q
(B., Mayboroda, 2016) Suppose that g — Sqg|, is one-to-one with a
bounded left inverse. Then there is at most one solution:

“’aQ + DQ(“’@Q”@Q = Sa(v- v“)’aQ
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Well posedness and invertibility

(The classic method of layer potentials) Suppose that g — Sgg\aQ is onto
with a bounded right inverse. Then we have existence of solutions.

(Verchota, 1984) Suppose that we have uniqueness of solutions.
Then SQ]aQ is one-to-one with bounded left inverse.

(B., Mayboroda, 2013) Suppose that we have existence of solutions.
Then SQ|aQ is onto with bounded right inverse.

=vy-Vuy+v_-Vu_

€« ——

————>

Q
(B., Mayboroda, 2016) Suppose that g — Sqg|, is one-to-one with a
bounded left inverse. Then there is at most one solution:

ulaq + Dalulsg)]aq = Salv - Vi) 4
so u= _DQ(”’aQ) + SQ((SQ‘aQ)il(UbQ + DQ(U‘éﬂ)‘aQ))
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The Green's formula: second-order operators

If Ais real (Griiter, Widman, 1982; Kenig, Ni, 1985), complex and
satisfies the De Giorgi-Nash-Moser condition (Hofmann, Kim, 2007), or

satisfies the Moser condition (Rosén, 2013) then there is a fundamental
solution E£(Y') such that

~-V-ATVEL = 6x.
Then formally

”(X):—/aQV'ATVE)’L(\udavL/aQEQU-AVudo/ E{V - AVu.

Q
In particular, if V- AVu = 0 then we expect that

u(X):—/ u-ATVE)‘}uda+/ E{v-AVudo.
o0 oQ
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The Green's formula: second-order operators

If Ais real (Griiter, Widman, 1982; Kenig, Ni, 1985), complex and
satisfies the De Giorgi-Nash-Moser condition (Hofmann, Kim, 2007), or
satisfies the Moser condition (Rosén, 2013) then there is a fundamental
solution E£(Y') such that

~-V-ATVEL = 6x.
Then formally

u(X):—/ u-ATVEQUda+/
oN onN

In particular, if V- AVu = 0 then we expect that

E;}u-Avuda/ E{V - AVu.
Q

u(X):—/ u-ATVEf}uda—l—/ E{v-AVudo.
o0 oQ

It takes quite a bit of work to show that this is actually true!

(Kenig, Rule, 2009; Alfonseca, Auscher, Axelsson, Hofmann, Kim, 2011;
B., Mayboroda, 2013, 2016; Auscher, Mourgoglou, 2014; Hofmann, Kenig,
Mayboroda, Pipher, 2015; Hofmann, Mayboroda, Mourgoglou, 2015;
Hofmann, Mitrea, Morris, 2015; others
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Higher order layer potentials

If A has constant coefficients, we can construct the fundamental solution
E)"} to
(-1)"V™ . ATVTEL = 6x

using the Fourier transform.
We cound define

Déf'(X):/aQ MATES - £ do, ség(X):/mvm—lE;}-gda.

(Cohen, Gosselin, 1983/1985; Verchota, 2005; I. Mitrea, M. Mitrea, 2013)
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Higher order layer potentials

If A has constant coefficients, we can construct the fundamental solution
Ef} to
(—1)"V™ . ATVTES = 6x

using the Fourier transform.
We cound define

DAF(X) = / MA ES  fdo, SAs(X)= [ V™'EL sdo.
o0 a0
(Cohen, Gosselin, 1983/1985; Verchota, 2005; I. Mitrea, M. Mitrea, 2013)

(B., 2016) There is a fundamental solution even for variable coefficients. . .
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The fundamental solution

(Hofmann and Kim, 2007; B., 2016) The (gradient of the) fundamental
solution Vy E£(Y) is the kernel of the operator A" = (—1)m(LT)-1vm
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The fundamental solution

(Hofmann and Kim, 2007; B., 2016) The (gradient of the) fundamental
solution V_yE)‘}(Y) is the kernel of the operator A" = (—1)m(LT)~1vy™
where TTAH satisfies

Vg - AV H = | Vmp - H
R4 Rd

for all @ € W™2(RY).
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The fundamental solution

(Hofmann and Kim, 2007; B., 2016) The (gradient of the) fundamental
solution V_yE)A<(Y) is the kernel of the operator A" = (—1)m(LT)~1vy™
where TTAH satisfies

Vg - AV H = | Vmp - H
R4 Rd

for all € W™2(RY).

Theorem (Lax-Milgram)
Let H be a Hilbert space. Let B : H x H — C and suppose:
@ B is bilinear,
o [B(v. w)| < Allv] |w
o [B(v.v)| 2 Alv]>
If T : H— C is a bounded linear operator, then there exists a unique
element ur € H such that T(v) = B(v, ur), and ||ur||n < HITl Hoe

’
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Another way to write jump relations
Let f, g be nice functions defined on 0€2. Recall that Dqf, Sqg satisfy:

A(Sqg) =0in Qy, A(Dqf) =0in Qq,
vy -VSaqg +v_ -VSag = g, vy -VDqf +v_ - VDqf =0,
'SQg|aQ+ = Saglyq_ - DQﬂaQ+ = Daf|yy —f.
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Another way to write jump relations

Let f, g be nice functions defined on 0€2. Recall that Dqf, Sqg satisfy:

A(Sag) =0in Q4, A(Dqf) =0 in Qu,
vy -VSaog+v_-VSog=g, v -VDqof +v_-VDqof =0,
'Sﬂg|aﬂ+ = Saglyq_ - DQﬂaQ+ = Daf|yy —f.

This means that
/ Trtpgda:/ th-VSQg+/ V(p-VSQg:/ V- -VSqg,
a0 Q. Q. Rd

0= [ V¢ -VDof+ | Vo -VDof = | V-VDqf
Q. O Rd

and

Sag € Wigd(RY), Dqf = v — 1gF where F, v € W (R?), F|,, = f.

loc loc
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Harmonic layer potentials via the Riesz theorem

Let f, g be nice functions defined on 0€2. Recall that

/Tr(pgdcr:/ V- -VSqg, 0= Vi -VDqf
o R4 R4

and

Sag € W5L(RY), Daf = v —1gF where F, v € W5L(RY), Fl,o = f

loc loc
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Harmonic layer potentials via the Riesz theorem

Let f, g be nice functions defined on 0€2. Recall that

/ Tr(pgdcr:/ V- -VSqg, 0= Vi -VDqf
o R4 R4

and
Sag € WL (RY), Daf =v — 1F where F, v € WLL(RY), Fl,, = f

loc

50 [pa Vo -Vv=[Vp VF.
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Harmonic layer potentials via the Riesz theorem

Let f, g be nice functions defined on 0€2. Recall that

/ Tr(pgda:/ V- -VSqg, 0= V- VDqf
o R4 R4

and

SQg S Wllo’i(Rd), DQf =V — ].QF where F, v E WI]Si(Rd), F‘aQ =f

50 [pa Vo -Vv=[Vp VF.

It is well known that if €2 is a Lipschitz domain then

{TrF: F e WM(RY)Y = WY22(6Q),  (WY/22(8Q))* = W~1/22(8Q),

Ariel Barton The higher-order Neumann problem May 30, 2018 31/39



Harmonic layer potentials via the Riesz theorem

Let f, g be nice functions defined on 0€2. Recall that

/ Tr(pgda:/ V- -VSag, 0= Vi -VDqf
o0 R4 RY

and

Sag € Wisi(RY), Daf = v —1gF where F, v € WLL(RY), Fl,, = f
50 [pa Vo Vv = [,Vp- VF.
It is well known that if €2 is a Lipschitz domain then

{TrF: F e WY2(RY)} = WY22(6Q),  (WY22(8Q))* = W~/22(8Q),
so if £ € W1/22(8Q) and g € W~1/22(6Q), we can construct
v € WL2(RY) and Sqg € W'2(RY) via the Riesz representation theorem.
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General single layer potentials via the Lax-Milgram theorem
Let A be bounded and satisfy

afe/ Vmg . AV > )\/ V™| for all p € WE2(RY).
R4 R4
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General single layer potentials via the Lax-Milgram theorem
Let A be bounded and satisfy

afe/ Vmg . AV > )\/ V™| for all p € WE2(RY).
R4 R4

If Q is a Lipschitz domain, then the boundary trace operator Tr \VAURERT
bounded W™2(RY) s W1/22(89).
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General single layer potentials via the Lax-Milgram theorem
Let A be bounded and satisfy

R [ Vmp AV > )\/ V™| for all p € WE2(RY).
R4 R4

IfQisa Lipschitz domain, then the boundary trace operator Tr vm1is
bounded W™2(RY) — W1/22(5Q).

By the Lax-Milgram theorem, if & € W=1/22(5Q), then there is a unique
function S5¢ € W12(R?) such that

VT AVTShs = / TrV™ lp.gdo  forall € WH2(RY).

Rd 0N
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General single layer potentials via the Lax-Milgram theorem
Let A be bounded and satisfy

R [ Vmp AV > )\/ V™| for all p € WE2(RY).
R4 R4

IfQisa Lipschitz domain, then the boundary trace operator Tr vm1is
bounded W™2(RY) — W1/22(5Q).

By the Lax-Milgram theorem, if & € W=1/22(5Q), then there is a unique
function S5¢ € W12(R?) such that

VT AVTShs = / TrV™ lp.gdo  forall € WH2(RY).

Rd 0N

Then L(S5¢) =0in Q4 and Q_, Try V™ 185e = Tr_ V™-1Skg, and
m—1 ol - ol - _ m mel - m meol -
(V (p,l\/IASQg—I—I\/IASQg>aQ—/V (pAV SQg—i-/V (PAV SQg
Q. Q_
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General double layer potentials via the Lax-Milgram

theorem
Let f'.: TrV"’_llj— for some F € W"’vz(Q)_ Let Déf satisfy
(D4f + 1oF) € WT2(RY),

V™ - AV™(D4F + 1F) = / V™ - AV™F.
Rd Q
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General double layer potentials via the Lax-Milgram
theorem

Let f'.: TrV"’_llj_ for some F € W"’v2(§2)_ Let Déf satisfy
(D4f + 1aF) € Wm™2(RY),

V™ - AV™(D4F + 1F) = / V™ - AV™F.
Rd Q
D4 is well defined. If Tr V™~1F = Tr V™ 1F, then
V™ - AV(D4F + 1gF) = / V™ - AV™F
R4 Q

and (1qF — 19F) € W™2(RY):

~ F—F inQ
1oF — 1oF =
ar e {0 in R\ Q.
So (D4f + 1oF) € W™2(Q).
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Properties of layer potentials
We have constructed layer potentials via the Lax-Milgram theorem.
Let & € W1/22(8Q), f € WAZ | ,(69) ¢ W'/22(5Q).
o The conditions L(D4f) =0, L(S5¢) = 0 and the jump relations
follow from the definition.
o Let Lu=0in Q. Then D4(Tr V™ lu) = —1qu + v, where
VMo AVy = / VT AV = / TV Lo Miudo
R Q o)
= [ V™. AV"S5(M3u)
Rd
so we have the Green's formula 1ou = —DA(Tr V™~ 1u) 4+ S5(MG ).
@ Boundary value problems are well posed if and only if boundary values
of layer potentials are invertible.
@ We can derive the formulas involving E§< using the connection
between E§< and L1
o We can derive adjoint relations: (M$D4)* = MLDE",
(Trvm=1St)* = Tr vm=1SL" (Try VP IDA)* = —M . SE
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The Neumann subregularity problem

Theorem (B., Hofmann, Mayboroda)

Let A be a self-adjoint, t-independent, elliptic matrix of coefficients.
Then there is a solution to the W—12-Neumann problem

V™. AV™y =0 inRY,
MAu =g on ORY,

m 2 N m—1 2 =112
/Riw u(x, t)] tdxdl“—i—/Rd_1 N (V" u)(x)dx < ||g||W31(aRi)

that is unique up to adding polynomials of degree m — 1.
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The LP problems

Recall:
(Pipher and Verchota, 1995) If Q is a bounded Lipschitz domain and A is
constant, and if 2 — € < p < 2+ ¢, then we can solve the problems

V™AV u=0inQ, V7"l =f, [NV )lean) S Il lliean).
VT AV u=0in Q, V" lul o = f, [IN(V™0)||ean) S IV-FlLoon)-

(Shen, 2006) For constant coefficient operators, using well posedness of
the Dirichlet problem with L2(0Q) and W'2(8Q) boundary data, we can
establish well posedness of the Dirichlet problem with boundary data in
LP(0Q2),2 < p <2+ made 3

By duality we can establlsh welf posedness for boundary data in
WP(8Q), 1+ max(0, =2 — ) < p < 2.

(Shen, 2007) Similarly, we can solve the biharmonic Neumann problem
with boundary data in Wfl'p(aﬂ), 2<p<2+ m + ¢, and in
LP(8R), 1+ max(0, ¢ d—H —g)<p<2
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The LP problems

Conjecture

Let A be a self-adjoint, t-independent, elliptic matrix of coefficients.
Then there are solutions to the LP-Neumann problem,
1+max(0,Z—ﬁ—e) <p<2+ce,

{ V™. AV"w =0inRY, Maw =g ondRY,
A3 (£V 0wl Lo(ra-1) + [IN+ (VW) Lp(ra—1) S Il§

|Lp(re-1)
and the W—YP-Neumann problem, 2 —e < p <2+ m + €,
V™. AV™v =0inRY, Mav=hondRY,
lAZ (9™ oty + IR (720 ooty S Ilhi-mggas

that are unique up to adding polynomials.
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Open questions

We would like to solve the Dirichlet problem

V™. AV"u=0in RY,
V7" 1y = f on ARY,

/Rd IV™8u(x, t)[% t dx dt + /Rdl N (V7u) ()2 dx S 1120
+
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Open questions

We would like to solve the Dirichlet problem

V™. AV™y=0in RY,
V™ lu="f on 6Rd,

[ 1970 OF e+ [ RIS 1y
+

N
We would like to work with systems (Lu); = Z Z 60‘(A{xkﬁ6ﬁu).
k=1l|a|=|B|=m
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Open questions

We would like to solve the Dirichlet problem
V™. AV"u=0in RY,
V™l =f on ORY,
m 2 N/ m
/ng Oru(x, t)| tdxdiH—/]Rd1 N (V™u)(x)? dx < ||f||W2(6RC’
N .
We would like to work with systems (Lu); = Z Z 60‘(Ajakﬁ6ﬁu).

k=1 |a|=|p|=m
We would like to solve boundary value problems in Q

Lipschitz domains rather than RY. 4 YN
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Open questions

We would like to solve the Dirichlet problem

V™. AV"u=0in RY,
V™ 1ly=fon 6]1%1,

[ 1970 OF e+ [ RIS 1y
+

N
We would like to work with systems (Lu); = Z Z 0 (A{Xﬁéﬁu).
k=1 |a|=|p|=m
We would like to solve boundary value problems in Q

Lipschitz domains rather than RY. 4 YN

We would like to look at boundary value problems with lower order terms
V™. AV "y 4+ VT L. BYTy V™. CV ly 4. =0,
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Thank you!

Happy birthday, Steve!
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