
Workshop on Geometry

and Dynamics of Foliations

Madrid, September 1-5, 2014 Instituto de Ciencias Matemáticas
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INVITED LECTURES

Dynamics of the horocyclic flow for homogeneous and
non-homogeneous foliations by hyperbolic surfaces

Fernando Alcalde Cuesta

ECSING Research Group - GeoDynApp Team

The aim of this talk is to present some progress towards the understanding of the dynamics
of the horocyclic flow on compact foliated manifolds by hyperbolic surfaces. This is motivated
by a question formulated by Matilde Mart́ınez and Alberto Verjovsky on the minimality of this
flow when the action of the affine group generated by the combined action of the geodesic and
horocyclic flows is minimal too.

Firstly, we shall extend the classical theorem proved by Gustav A. Hedlund in 1936 on the
minimality of the horocyclic flow on compact hyperbolic surfaces to homogeneous manifolds for
the product of PSL(2,R) and any connected Lie group G. We shall give an elementary proof
that does not use the famous Ratner’s Orbit-Closure Theorem. We shall also show that this
is always the case for homogeneous Riemannian and Lie foliations. This is a joint work with
Françoise Dal’Bo.

Examples and counter-examples will take an important place in our talk. They will serve
to illustrate our result, as well as a theorem by Mart́ınez and Verjovsky that characterises the
minimality of the affine action. We shall use another classical example to briefly describe some
work in progress with Dal’Bo, Mart́ınez and Verjovsky in the non-homogeneous case.

C1-actions in dimension 1: centralizers and rigidity

Christian Bonatti

with Églantine Farinelli, Nacho Monteverde, Andrés Navas, Cristobal Rivas

CNRS and Université de Bourgogne

A classical consequence of Szekeres’ and of Kopell’s works is that the C1-centralizer of a C2

diffeomorphism of [0, 1] is abelian unless the diffeomorphism coincides on the identity map on
some non-empty open set. This shows that a purely algebraic assumption on a subgroup of
Diff2([0, 1]) allows us to recover topological properties.

Neither Szekeres nor Kopell’s work hold for C1 diffeomorphisms and the C1 centralizer of
C1 diffeomorphisms may be very huge: for instance, with Farinelli, we proved that there are
diffeomorphisms of [0, 1] with no fixed point in (0, 1) and whose centralizer contains a free group
F2.

Nevertheless, with Monteverde, Navas and Rivas we prove a C1-rigidity property of the
Bauslag-Solitar group B(1, 2) = 〈 g, f | ghg−1 = h2 〉 which implies that the centralizer of a
diffeomorphism f of [0, 1] contains a subgroup isomorphic to B(1, 2) if and only if f coincides
with the identity map on some non-empty open interval. In other words we recovered a purely
algebraic assumption on subgroups of Diff1([0, 1]) which leads to topological properties.
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Contact perturbations of Reebless foliations are universally tight

Jonathan Bowden

Universität Augsburg

We will discuss the relationship between tightness for contact structures and Reebless foliations
in light of Eliashberg and Thurston’s approximation theorem. This leads to a characterisation
of Reeblessness in terms of contact topology and suggests an interesting extension of tightness
for confoliations.

Smoothability of finite depth foliations

Lawrence Conlon

with John Cantwell

Washington University in St. Louis

We study foliations of finite depth on compact n-manifolds, developing a condition sufficient
for C1-smoothability. The condition is that “all junctures have bounded growth type.” This is
applied to the finite depth foliations of sutured 3-manifolds constructed by David Gabai from
well groomed sutured manifold hierarchies. This construction is not strictly algorithmic and
allows choices of junctures that do not have bounded growth, but we show that one can always
choose junctures with bounded growth. Gabai’s foliations will be C2-smoothable if and only if
the junctures can be chosen to be compact (0 growth). This is typically impossible, but when it
happens the construction is algorithmic, the resulting C2 foliation is actually C∞ and is uniquely
determined by the sutured manifold hierarchy. For depth 2 foliations, a sufficient condition for
C1-smoothability is that the junctures have quasi-polynomial growth.

Centralizers of smooth interval diffeomorphisms

Hélène Eynard-Bontemps

IMJ – PRG, Université Pierre et Maris Curie (Paris, France)

When studying the space of smooth Z2-actions on the interval or the circle, one is confronted
with the existence of diffeomorphisms with “nasty” centralizers, the first examples being due to
Sergeraert in the seventies. More precisely, while the C1 centralizer of a smooth contraction f
of the half-line [0,+∞) is always a one-parameter group, naturally identified to R, with f ' 1,
the C∞ centralizer, on the other hand, can assume various shapes. In Sergeraert’s construction,
for example, it restricts to the infinite cyclic group generated by f . But it can get “worse”: the
C∞ centralizer can contain irrational numbers, and thus be dense in R, while not being all of
R. It is then natural to wonder, more generally, which subgroups of R can be realized as the
C∞ centralizer of such a contraction. A first observation, as the construction we will present
suggests, is that there might be som e restrictions on the kind of irrational numbers that can
arise in this setting.
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Knot theory of R-covered Anosov flows: Homotopy versus isotopy of
closed orbits

Sergio R. Fenley

with Thomas Barthelme

Florida State University

Anosov flows have infinitely many closed orbits - a countable number. About 20 years ago we
proved the following unexpected and striking result: suppose that Φ is an R-covered Anosov
flow in an atoroidal manifold. Then every closed orbit is freely homotopic to infinitely many
other closed orbits. R-covered means that the stable foliation lifts to the universal cover as a
foliation with leaf space the real numbers R. We also showed that there is an infinite family of
examples satisfying the hypothesis (the manifolds are hyperbolic).

In this talk we analyse whether these infinitely many freely homotopic orbits represent the
same knot in the manifold. That is, are they isotopic? We show that if the stable foliation is
transversely orientable then this is indeed true. This means that there is an infinite family of
closed orbits which are isotopic to each other. To analyse this question we use the topological
structure of skewed, R-covered Anosov flows, which is very rich. We then use the universal
circle of (say) the stable foliation of the flow. This allows us to produce geometric walls in the
universal cover, which realize the free homotopies between closed orbits described above. These
walls project to a free homotopy between the closed orbits in the manifold. Then we do a very
careful analysis of the possible self intersections of the quotient annuli and show they produce
an isotopy between the closed orbits, even in the case that the annulus is not embedded.

Linearization and geometry around leaves

Rui Loja Fernandes
University of Illinois at Urbana Champaign

In this talk I will discuss some recent results concerning the normal forms and the geometry
around leaves of geometric structures that have an underlying foliation, due to several people
(Crainic, Marcut, Struichner, Weinstein, Zung, etc.). A unifying role is played by a far reaching
result on linearization around saturated submanifolds, valid for any Riemannian Lie groupoid,
obtained recently in joint work with Matias del Hoyo.

Towards the classification theorem for onedimensional pseudogroups

Victor Kleptsyn

with B. Deroin, D. Filimonov and A. Navas

Université de Rennes

My talk, based on joint works with B. Deroin, D. Filimonov and A. Navas, will be devoted
to the recent progress in the understanding of (pseudo)-group actions on the circle, as well as
foliations of real codimension one.
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One large class of such actions is those that are sufficiently rich: there are local flows in local
closure. Roughly speaking, restricting the dynamics on some subinterval J and closing it in
C1(J), one finds a one-parameter subgroup generated by some vector field (to be more precise,
a neighborhood of identity in such subgroup: the flow is no longer defined once the points leave
J). In this case, it is easy to obtain the Lebesgue-ergodicity of the action as a corollary of the
one of such local flow (and there are some other interesting conclusions) – as do Loray, Nakai,
Rebelo, Scherbakov. As Ghys’ commutator technique shows, an analytic action is guaranteed
to fall in this class provided that there is a free subgroup, generated by the elements sufficiently
close to the identity.

Another large class consists of the actions admitting a Markov partition. The presence of
such a partition is quite restrictive, giving us a good control on the action. An example of such
action is the standard action of PSL(2,Z), or (in the non-minimal case) the Schottky group.

Recent results, obtained in a joint project with B. Deroin, D. Filimonov, A. Navas suggest
(though do not establish in its full generality) that there is nothing else but these two classes. In
other words, the following alternative seems to hold: an action either admits a Markov partition,
or has local flows in its local closure.

Compact foliations in Poisson geometry

David Mart́ınez Torres

Pontificia Universidade Catolica, Rio de Janeiro

A Poisson manifold is foliated by symplectic leaves; the behavior of the (possibly singular) foli-
ation can be rather complicated. We introduce ‘compact type conditions’ for Poisson manifolds
so that their leaf spaces become orbifolds (i.e, our conditions can be thought of as analogs of
finite holonomy for compact foliatons). We will also see how these orbifolds are endowed with
integral affine structures. This is joint work with M. Crainic and R. L. Fernandes.

The space of contact Anosov flows on 3-manifolds

Shigenori Matsumoto

Department of Mathematics, Nihon University, Tokyo

In this talk, we investigate the space of contact Anosov flows on an oriented closed 3-manifold
N . An Anosov vector field A on N is said to be contact if it is the Reeb vector field of some
contact form τ , that is, if τ(A) = 1 and ιA(dτ) = 0. If A is contact Anosov, then it leaves the
volume form τ ∧ dτ invariant: LA(τ ∧ dτ) = 0.

Let Ω be a fixed C∞ volume form on N , and let τ ∧ dτ = fΩ for some positive valued C∞

function on N . Then the vector field fA, called a time change of A, leaves Ω invariant.
Denote by AΩ(N) the space of the Ω-preserving Anosov vector fields, and by CAΩ(N) the

subspace of AΩ(N) consisting of the time changes of contact Anosov flows. It is natural to ask
how CAΩ(N) looks like in AΩ(N).

Until before [1], the only known examples of contact Anosov flows are geodesic flows of
negatively curved surfaces. Our main result is the following.

Main Theorem The space CAΩ(N) forms an C1-open subset of an affine subspace of AΩ(N)
of codimension equal to the Betti number of N . In particular, if N is a rational homology sphere,
the subset CAΩ(N) is C1-open in AΩ(N).

4



In [1], plenty of examples of contact Anosov flows are constructed on various manifolds
including hyperbolic 3-manifolds. The above theorem can also serve as producing new examples
which are C1-near to classical examples.

[1] P. Foulon and B. Hasselblatt, Contact Anosov flows on hyperbolic 3-manifolds, Geometry
and Topology 17(2013), 1225-1252.
[2] S. Matsumoto, The space of (contact) Anosov flows on 3-manifolds, J. Math. Sci. Univ.
Tokyo 20(2013), 445-460.

Haefliger structures and giggling as tools in the h-principles

Gaël Meigniez

Université de Bretagne-Sud

Incompressible fluids on foliated manifolds

Yoshihiko Mitsumatsu

Dept. of Math., Chuo University, Tokyo, Japan

Even though analytical foundations for the fluid mechanics is still very hard to establish and
not yet enough developed, it is still a tempting idea to look at fluids how they flow on manifolds
for understanding the topology and geometry of manifolds. Moreover in the case of foliated
manifolds. we even encounter a difficulty in writing down a proper Euler equation, the equation
of motion for ideal foliated fluids.

This talk is concerning a more primitive stage than the genuine fluid mechanics, namely,
trying to understand, in the case of codimension 1 foliations on closed oriented 3-manifolds, the
space of velocity fields of foliated ideal fluids. One of the main tools is the asymptotic linking.

For a volume form dvol on a closed oriented manifold M , X denotes the set of smooth vector
fields on M , Xd the set of divergence free vector fields, and Xh the kernel of the asymptotic cycle
: Xd � H1(M). The asymptotic linking lk is a symmetric bi-linear form on Xh.

Under the presence of a codimension 1 foliation F on M X (M ;F) = {X ∈ X ; X//F} and
X∗(M ;F) = X (M ;F)∩X∗ for ∗ = d, h. Also Xloc(M ;F) denotes the span of locally supported
ones in Xd(M ;F), which is, in a reasonable sense, fairy understandable.

Our fist observations are the relations between the spaces Xd(M ;F) ⊃ Xh(M ;F) ⊃ Xloc(M ;F)
and lk. Especially we see Xh(M ;F)/Xloc(M ;F) carries an induced pairing from (Xh(M ;F), lk).
The next observation relates the induced pairing on Xh(M ;F)/Xloc(M ;F) to a differential in-
variants on H1(M ;F) (an interpretation of the Godbillon-Vey by Arraut-dos Santos). Our
previous results on H1(M ;F) implies the nontriviality of this quotient. Of course the image of
Xd(M ;F)/Xh(M ;F) in H1(M) depends on F . We will introduce a nontrivial example of this
image problem.

If the situation allows, not only the Euler equation but also the topics around conservation
laws are discussed.

[1] Arnold VI, Khesin BA. Topological Methods in Hydrodynamics. Springer; 1998.
[2] Arraut JL, Dos Santos NM. The characteristic mapping of a foliated bundles, Topology, 31-2
(1998), 545-555.
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[3] Matsumoto Sh, Mitsumatsu Y. Leafwise cohomology and rigidity of certain group actions,
Ergodic Theory and Dynamical Systems, 23 (2003), 1839-1866.
[4] Mitsumatsu Y. Helicity in Differential Topology and Incompressible Fluids on Foliated 3-
Manifolds, Procedia IUTAM Volume 7, (2013), 167-174.

Foliated symplectic topology

Francisco Presas

ICMAT, Madrid

Symplectic Topology has become a deep subarea of the classical Differential Topology. The main
reason is twofold:

1. there are unexpected rigidity phenomena making the intersection theory richer (Floer the-
ory) and providing unexpected behaviours in the naturally associated dynamical systems
(Arnold’s, Conley’s and Weinstein’s conjectures),

2. the category is flexible enough to capture many examples: existence of several h–principles
for the classification problem of contact structures, existence of symplectic h–cobordism
theorems, etc.

The goal of this talk is to introduce a class of foliations that allows us to define a “Foliated
Symplectic Topology”. The so called contact and symplectic foliations allows us to create a
dictionary taking Symplectic Topology concepts into the Foliation Theory framework. As an
example we will detail the study of the “overtwisted contact foliations” (flexible object) and we
will state a foliated Weinstein conjecture that we will partially prove (rigid phenomenon).
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CONTRIBUTED TALKS

Isometry flows on orbit spaces and applications to the theory of
foliations

Marcos M. Alexandrino

Instituto de Matemática e Estat́ıstica, Universidade de São Paulo (USP), Brazil

In this talk, we discuss the following result: Given a proper isometric action K × M → M
on a complete Riemannian manifold M then each continuous isometric flow on the orbit space
M/K is smooth, i.e., it is the projection of a K-equivariant smooth flow on the manifold M .
The first application of our result concerns Molino’s conjecture, which states that the partition
of a Riemannian manifold into the closures of the leaves of a singular Riemannian foliation
is still a singular Riemannian foliation. We prove Molino’s conjecture for the main class of
foliations considered in his book, namely orbit-like foliations. We also discuss smoothness of
isometric actions on orbit spaces. This talk is based on a joint work with Dr. Marco Radeschi
(wwu- Munster) [1] and is aimed at a broad audience of students, faculties and researchers in
Geometry.

[1] Marcos M. Alexandrino, Marco Radeschi, Smoothness of isometric flows on orbit spaces and
Molino’s conjecture. Preprint (2014) arXiv:1301.2735 [math.DG]

Rigidity of certain solvable actions on the tori

Masayuki Asaoka

Department of Mathematics, Kyoto University

For n ≥ 1 and k ≥ 2, let Γn,k be the finitely presented group

〈a, b1, . . . , bn | abia−1 = bki , bibj = bjbj (∀i, j = 1, . . . , n)〉.

This group is solvable and Γ1,k is the Baumslag-Solitar group BS(1, k). For a basis B =

(v1, . . . , vn) of Rn, we define an affine Γn,k-action ρ̂B on Rn by ρ̂aB(x) = kx and ρ̂biB(x) = x+ vi.
There are two natural compactifications of Rn. The first is the one-point compactification
Sn = Rn ∪ {∞}. The second is the product Tn = (R∪ {∞})n of the one-point compactification
of R. The affine Γn,k-action on Rn extends to both compactifications. We write ρ̄B and ρB
them for the extended actions to Sn and Tn, respectively. Remark that ρB coincides with ρ̄B if
n = 1.

For the case n = 1, Burslem and Wilkinson ([3]) proved the local rigidity of ρB . For the case
n ≥ 2 and Sn, the action ρ̄B is not locally rigid but it exhibits rigidity in the following sense.

Theorem ([1]) For any given basis B0 of Rn, there exists a C2-neighborhood U of ρ̄B0
in the

space of Γn,k-actions on Sn such that any C∞ action ρ in U is C∞ conjugate to ρ̄B for some
basis B. In particular, ρ preserves a smooth conformal structure diffeomorphic to the standard
conformal structure on Sn.

The proof is divided into two parts; local rigidity of the local action at the global fixed point
∞ and extension of a local conjugacy to a global one.
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In this talk, we apply the method used in the proof of this theorem to another extension ρB
of ρ̂B on Tn. Remark that we can see that ρB is not locally rigid if n ≥ 2, like the Sn case.

Main Theorem ([2]) For any given basis B0 of Rn, there exists a C2-neighborhood U of ρB0

in the space of Γn,k-actions on Tn such that any C∞ action ρ in U is C∞ conjugate to ρB for
some basis B.

Proof of the first part – local rigidity of the local action at the global fixed point – is almost
same as the Sn case. Main difficulty for Tn case appears in the second part – extension of a
local conjugacy to a global one.

[1] M.Asaoka, Rigidity of certain solvable actions on the sphere. Geom. and Topology 16 (2013),
1835–1857 (electronic).
[2] M.Asaoka, Rigidity of certain solvable actions on the tori. preprint.
[3] L.Burslem and A.Wilkinson, Global rigidity of solvable group actions on S1. Geom. Topol.
8 (2004), 877-924 (electronic).

Classification of isoparametric foliations on complex projective spaces

Miguel Doḿınguez-Vázquez

IMPA, Rio de Janeiro, Brazil

An isoparametric foliation on a Riemannian manifold is a singular Riemannian foliation whose
regular leaves have parallel mean curvature and the distribution defined by their normal bundles
is integrable. When such a foliation is induced by a Lie group isometric action, we say that the
foliation is homogeneous.

The study of these objects goes back to Levi-Civita, Segre and Cartan, who showed that
all codimension one examples in Euclidean and hyperbolic spaces are homogeneous. In spheres,
however, there are inhomogeneous examples of codimension one [2], but not of higher codimen-
sion [3].

Recently, in [1] we obtained the complete classification of irreducible isoparametric foliations
of codimension at least two on complex projective spaces, as well as an almost complete classifi-
cation in codimension one. Surprisingly, there are inhomogeneous examples even in codimension
larger than one.

In this talk, I plan to discuss the main ideas of our classification, which include the use of the
Hopf fibration and of the so-called extended Vogan diagrams. I will also present an unexpected
characterization of the inhomogeneous examples by means of prime numbers.

[1] M. Domı́nguez-Vázquez, Isoparametric foliations on complex projective spaces, arXiv:1204.3428v3,
to appear in Trans. Amer. Math. Soc.
[2] D. Ferus, H. Karcher, H. F. Münzner, Cliffordalgebren und neue isoparametrische Hy-
perflächen, Math. Z. 177 (1981), no. 4, 479–502.
[3] G. Thorbergsson, Isoparametric foliations and their buildings, Ann. of Math. (2) 133 (1991)
429–446.
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On classification of structurally stable diffeomorphisms with
2-dimensional nonwandering sets on 3-manifolds.

Viacheslav Grines

Lobachevskii State University of Nizhnii Novgorod

It was proved by R. Plykin in 1971 that any two-dimensional basic set Ω of a diffeomorphism f
satisfying Axiom A by Smale (A-difffeomorphism) given on a 3-manifoldM3 is either an attractor
or a repeller. It was proved in [1] that any structurally stable diffeomorphism f : M3 → M3

whose nonwandering set contains a 2-dimensional expanding attractor or a contracting repeller
is topologically conjugated to a DA-diffeomorphism obtained from Anosov diffeomorphism by
Smale surgery operation.

A basic set Ω of f is called a surface basic set if it belongs to an invariant surface topo-
logically embedded in M3. It was proved in [2] that a 2-dimensional surface basic set of an
A-diffeomorphism f : M3 → M3 is homeomorphic to a torus tamely embedded in M3 and
the restriction of fk is topologically conjugate to an Anosov automorphism for some k ≥ 1.
It was recently proved by R. Brown that any 2-dimensional basic set of an A-diffeomorphism
f : M3 →M3 is either an expanding attractor or an attracting repeller or a surface basic set.

The present report is devoted to the complete topological classification of structurally stable
diffeomorphisms given on M3 whose nonwandering sets consist of 2-dimensional surface attrac-
tors and repellers. The results were obtained in collaboration with Yu. Levchenko, V. Medvedev
and O. Pochinka.

The author thanks grants RFBR 12 -01- 00672 -a, 13 -01- 12452 - ofi-m and RNF 14-11-00446
for partially financial support.

[1] Grines, V. and Zhuzhoma, E. On structurally stable diffeomorphisms with codimension one
expanding attractors, Trans. Amer. Math. Soc., 2005 , vol. 357 , no. 2 , pp. 617 - 667.
[2] V.Z. Grines , V.S. Medvedev, E.V. Zhuzhoma. On Surface Attractors and Repellers on 3-
manifolds. Mathematical Notes, 2005, 78:6, 757–767.

Transitive dual foliations

Luis Guijarro

Universidad Autónoma de Madrid - ICMAT

A few years ago, Burkhard Wilking introduced the idea of the dual foliation associated to a
singular Riemannian foliation in a manifold with a nonnegatively curved metric. Roughly said,
the dual leaves are constructed by taking curves that stay orthogonal to the original leaves
everywhere. In the same paper, Wilking showed that when the manifold has positive sectional
curvature, the dual foliation contains only one leaf. We refer to this phenomena as saying that
the dual foliation is transitive.

In this talk we prove that when the original foliation is given by the fibers of a Riemannian
submersion, the dual foliation is often transitive even without the positive curvature assumption
due to a variety of reasons. First, we give conditions on the long exact homotopy sequence asso-
ciated to the submersion asssuring transitivity of the dual foliation. We also prove transitivity
for torus actions on simply-connected manifolds, and for principal submersions.
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Variation formulas for transversally harmonic maps

Seoung Dal Jung

Jeju National University, Korea

Let (M,F) and (M ′,F ′) be two foliated Riemannian manifolds and let φ : M → M ′ be a
smooth foliated map, i.e., φ is a leaf-preserving map. Then φ is a transversally harmonic map
if it is a solution of τb(φ) = 0, where τb(φ) is a transversal tension field, which is given by
τb(φ) = trQ∇̃dTφ. That is, transversally harmonic maps are considered as harmonic maps
between the leaf spaces [1,2]. In this talk, we give variation formulas for transversally harmonic
maps and some applications [3].

[1] J. Konderak and R. Wolak, On transversally harmonic maps between manifolds with Rie-
mannian foliations, Quart. J. Math. Oxford Ser.(2) 54(2003), 335-354.
[2] J. Konderak and R. Wolak, Some remarks on transversally harmonic maps, Glasgow Math.
J. 50(2008), 1-16.
[3] S. D. Jung, Variation formulas for transversally harmonic and biharmonic maps, J. Geom.
Phys. 70(2013), 9-20.

Group actions, Foliations and Genericity

Gilbert Hector

We propose a review of Foliations and Laminations Theory at the junction of different
streams of investigations. Precisely consider a lamination L on a compact space M , a complete
transversal Q and the holonomy pseudo-group P acting on Q. Our approach relies on the
following observations and results:

(1) Álvarez-López and Candel (and others) observed in [1] that P may be considered as a
finitely generated group of transformations of Q so that any leaf L of L has the quasi-
isometry type of a homogeneous space.

(2) Genericity properties were observed by E. Ghys in [4] in the measure theoretic setting
using the harmonic measures of L. Garnett, later extended to minimal laminations by
Cantwell-Conlon in [3]. They noticed that there exists a “residual” set of leaves having
all either one, two or a Cantor set of ends; a situation which is similar to that of finitely
generated groups.

(3) Finally following Bermúdez-Hector in [4] or F. Paulin in [5], one observes that several
classical descriptions and theories extend to a very general setting of “foliations” (or group
actions) obtained by dropping transverse continuity thus defining for example the so-called
Borel-topological (BT for short) category of laminations or measured group actions.

Now our goal is threefold:

(A) For a given lamination (M,L) the group (Q,P) is not uniquely defined but all its represen-
tatives are Kakutani equivalent and therefore share common invariants like growth types,
endsets, amenability, being or not HNN-extensions, . . . . Moreover one can may consider
them as groups of

i) homeomorphisms if the lamination is transversely modeled on the Cantor set,
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ii) Borel isomorphisms if one is interested in measure theoretical aspects,

iii) Baire or residual homeomorphisms that is bijective transformations which re-
strict to homeomorphisms of some residual subset of Q.

We translate to those different settings classical group theoretical notions and results. For
example, we investigate the notions of amenability, hyperfiniteness, affability. . .

(B) In particular, we present a simplified and unified treatment covering all the classical gener-
icity results and show that our approach gives rise to new results for the existence of
residual subsets of leaves all of the same topological type.

(C) Also Ghys shows that when the leaves have ”generically” more than one end, the holonomy
pseudo-group P is a so-called “HNN-extension” of pseudo-groups. This latter notion is
inspired by the corresponding notion for groups. Now considering P as a group, it becomes
essential to compare these two notions.
Indeed we will show that they don’t agree and describe the precise relations between them.

[1] Álvarez-López J. and Candel A., Generic coarse Geometry of leaves, preprint, Santiago de
Compostela (2003).
[2] Bermúdez M. and Hector G., Laminations hyperfinies et revétements, Ergodic Th. and
Dynam. Systems, 26 (2006), (2), 305-339.
[3] Cantwell J. and Conlon L., Generic leaves, Comment. Math. Helv., 73 (2)(1998), 306-336.
[4] Ghys E., Topologie des feuilles génériques, Ann. of Math., 141 (2)(1995), 387-422.
[5] Paulin F., Analyse harmonique des relations d’equivalence mesurées discretes, Markov Proc.
Rel. Fields, 5 (1999), 163-200.

Riemannian foliations of bounded geometry

Yuri A. Kordyukov

Institute of Mathematics, Russian Academy of Sciences, Ufa, Russia

The notion of bounded geometry for Riemannian foliations was first introduced by Sanguiao in
[1]. The definition given in [1] involves certain normal foliation charts. Following [2], we give an
equivalent chart-free definition of this notion. We also discuss some properties of Riemannian
foliations of bounded geometry and describe applications to a trace formula for foliated flows.

[1] L. Sanguiao, L2-invariants of Riemannian foliations, Ann. Glob. Anal. Geom. 33 (2008),
271–292.
[2] J.A. Álvarez López, Y. A. Kordyukov and E. Leichtnam, Riemannian foliations of bounded
geometry, preprint arXiv:1308.0637; to appear in Math. Nachr.
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Anosov diffeomorphisms: one unstable-leafwise curve with globally
defined holonomy

Yury G. Kudryashov

with Victor Kleptsyn

NRU Higher School of Economics, Moscow, Russia

A famous conjecture due to Smale [3] and Newhouse [2] says that each Anosov diffeomorphism
is topologically conjugated to a diffeomorphism given by some standard algebraic procedure. In
particular, Smale’s conjecture implies that the universal cover of the phase space of an Anosov
diffeomorphism is Rn.

Consider the holonomy map along a curve in an unstable leaf. Generally speaking, this map
is defined in some subdomain of the stable leaf passing through the initial point of the curve.
If the holonomy map is defined in the whole stable leaf, we shall say that it is globally defined.
A folklore argument says that if a holonomy map along each unstable-leafwise curve is globally
defined, then the universal cover of the phase space is Rn. Recently Victor and me proved [1]
that there exists one unstable-leafwise curve of given diameter with globally defined holonomy
map.

The main idea behind the proof is to measure small leafwise distances by their rate of growth
under iterations of the Anosov diffeomorphism. I shall discuss the proof and possible ways to
generalize our result. I shall also briefly describe some homological obstructions to being a phase
space of an Anosov diffeomorphism.

[1] V. Kleptsyn and Yu. Kudryashov. A curve in the unstable foliation of an Anosov diffeomor-
phism with globally defined holonomy. Ergodic Theory and Dynamical Systems, available on
CJO2013, doi:10.1017/etds.2013.71.
[2] S. E. Newhouse. On codimension one Anosov diffeomorphisms. Amer. J. Math. 92 (1970),
761–770.
[3] S. Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc. 73 (1967), 747–817.
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An exotic S3 × R which is a non-leaf

Carlos Meniño

with Paul A. Schweitzer

Pontificia Universidade Católica do Rio de Janeiro

We show that there exists an exotic S3 × R which cannot be a leaf of a C1 codimension 1
foliation in a compact manifold. It would be, as far as we know, the first topologically end
periodic non-leaf (of course, for the smooth case) and the first exotic non-leaf.

The point for the construction relies in the so called complexity [1] of exotic R4. It is known
that one of the main differences between exotic R4’s and the standard R4 is the fact that big
compact sets cannot be separated from the end by a smooth sphere. Complexity measures this
difference; it is defined by

c(X) = sup
K⊂X

{
inf
Σ|K

β1(Σ)

}
.

Where K runs over the compact sets of X and Σ runs over the smooth 3-submanifolds discon-
necting K from the end of X (this separation condition is denoted by Σ|K).

In [1], an exotic R4 with infinite complexity is described. Thus we can find an exhaustion
by compact sets K1 ⊂ K2 ⊂ · · · ⊂ Kn ⊂ · · · and a increasing function b : N→ N∪{0} such that
K1 is a standard 4-ball and Kn cannot be separated from the end by a smooth 3-submanifold
with first Betti number lower than b(n). Now, the sets Bn = Kn \Kn−1 for n ≥ 2 will be called
blocks. We can easily puncture this exotic R4 and copy the same end structure in the new end
obtaining an exotic S3 × R which we shall denote by X. This will be our non-leaf.

For each separating block Bn there exists a compact set Cn such that every open set in X\Cn

separating X is not diffeomorphic to the interior of Bn. This key property forbids recurrences
on X which is the ingredient used to follow the Ghys procedure [3] for codimension 1 foliations.
For arbitrary codimension, the study of the Brownian motion in this manifold in the sense of
[4] is enough to show that X cannot be a generic leaf in the sense of L. Garnett [2], i.e., relative
to a harmonic measure.

[1] S. Ganzell. Complexity of exotic R4’s. Doctoral thesis, Rice University, 2000. //hdl.handle.net/
1911/19496
[2] L. Garnett. Foliations, the ergodic theorem and Brownian motion. J. Funct. Anal., 51
(3), 285–311 (1983).
[3] E. Ghys. Une variete qui n’est pas une fuille. Topology, 24 (1), 67–73 (1984).
[4] E. Ghys. Topologie de feuilles generiques. Ann. Math., 141 (2), 387–422 (1995).

The Calabi invariant and extensions of Diffeomorphism groups

Hitoshi Moriyoshi

Graduate school of Mathematics, Nagoya University, JAPAN

Let D be a disc in R2 of radius r > 0 with a symplectic form dx∧dy and G denote the group
of symplectomorphisms on D. There exists a short exact sequence of groups involving G:

1 −→ Grel−→G−→G∂ −→ 1,
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where G∂ = Diff+(∂D) is the group of orientation preserving diffeomorphisms on the boundary
∂D and Grel = {g ∈ G : g|∂D = id} the group of relative symplectomorphisms on the disc. On
the normal subgroup Grel one has a celebrated homomorphism Cal : Grel → R due to Calabi.
Thus, dividing the exact sequence by the kernel of Cal, one obtains another exact sequence:

0 −→ R−→G/ ker(Cal)−→G∂ −→ 1,

which turned out to be a central extension of G∂ . Then Tsuboi’s theorem [2] can be rephrased
as follows: the resulting class of the central extension in H2(G∂ ;R) is a constant multiptle of the
Euler extension of G∂ , namely, the central extension given by the universal covering space of G∂

and the constant is equal to a symplectic volume of the disc. In this talk I will exhibit another
proof of Tsuboi’s theorem. A novelty of the proof is twofold; we employ a double complex due
to Bott [1], which is a simplicial de Rham model of foliated disc bundle and introduce a notion,
so called ‘connection cochain’, to clarify the relation between the Calabi homomorphism and
the Euler class. In fact, we finally obtain a transgression formula connecting the Euler class to
the Calabi homomorphism.

We also talk about several applications of the transgression formula. First we relate the
Calabi homomorphism to the first Miller-Morita-Mumford class after generalizing the exact
sequence to the case of the Hamiltonian diffeomorphisms on a punctured surface with genus
more than 1. The second application is to derive an integration formula for the Euler class of a
flat circle bundle. By using the formula one can obtain a cyclic cocycle and a longitudinal index
theorem on a flat circle bundle that involves the power of the Euler class. Third, we mention
the case of a higher dimensional disc with a symplectic form. The Calabi homomorphism also
induces a central extension of a certain diffeomorphism group on the boundary. We clarify the
relation to the Euler cocycle of the central extension.

[1] R. Bott, On some formulas for the characteristic classes of group-actions, 25–61, Lecture
Notes in Math., 652, Springer, Berlin, 1978.
[2] T. Tsuboi, The Calabi invariant and the Euler class, Trans. A.M.S., 352 (2000), 515–524.

Connected but not locally connected minimal sets of codimension two
foliations

Hiromichi Nakayama

Aoyama Gakuin University

The classification of the minimal sets plays an important role in the study of codimension one
foliations. In case of codimension two foliations, there are many kinds of minimal sets and
it is impossible to classify all the minimal sets. Thus we fix a set as a target, and consider
constructing and classifying codimension two foliations with such a minimal set. For example,
we obtained several results when the minimal set is the Siepiński set (joint works with A. Bís
and P. Walczak).

In this talk, we consider the case when the minimal set is the multiple Warsaw circle. The
graph of sin 1/x is a well-known example of connected but not locally connected sets. The set
obtained by inserting infinitely many such components all over the circle is called a multiple
Warsaw circle.

In 1955, Gottschalk and Hedlund constructed a minimal homeomorphism of the multiple
Warsaw circle. However this homeomorphism is defined only on this set. In 1982, Handel
constructed a homeomorphism of a surface whose minimal set is the multiple Warsaw circle.
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The author recently constructed a diffeomorphism of a surface with the multiple Warsaw circle
as a minimal set by using the method of circle inverse limits. In this talk, we discuss about
codimension two foliations whose minimal sets are the product of the multiple Warsaw circle
and the circle.

Rigidity of Riemannian foliations
with locally symmetric leaves

Hiraku Nozawa

with Gaël Meigniez

Department of Mathematical Sciences, Colleges of Science and Engineering, Ritsumeikan
University

The relation between the geometry of leaves and the global structure of foliations has been
studied by many authors. An example is Zimmer’s work [1] on Lie foliations. He proved that the
holonomy group of a minimal Lie foliation is arithmetic if the leaves are isometric to a symmetric
space of noncompact type. In this talk, we will present a rigidity result on Riemannian foliations
[2], which may be regarded as a generalization of Zimmer’s theorem.

The typical examples of Riemannian foliations whose leaves are locally isometric to a sym-
metric space of noncompact type are the following:
Example (homogeneous Riemannian foliations). Let G be a connected Lie group and S a
compact Lie subgroup of G. Let H be a connected semisimple Lie group and K a maximal
compact subgroup of H. For a torsion-free cocompact lattice Γ of H×G, we have a Riemannian
foliation on

(
(K\H)×(S\G)

)
/Γ, which is induced from the product foliation (K\H)×(S\G) =⊔

g∈GK\H × Sg.
The main result of this talk is as follows:

Theorem. Let (M,F) be a compact manifold with a minimal Riemannian foliation. Assume
that M admits a Riemannian metric such that every leaf of F is locally isometric to a symmetric
space X =

∏
Xi, where Xi is an irreducible Riemannian symmetric space of noncompact type

of dimension greater than two. Then (M,F) is diffeomorphic to a homogeneous Riemannian
foliation.

In the case where (M,F) is a Lie foliation, the theorem is proved by using conformal struc-
tures on the leafwise boundary of infinity and by establishing a variant of strong Mostow rigidity.
The general case follows from the Molino theory and classification of leafwise isometries of ho-
mogeneous Lie foliations.

[1] R. Zimmer, Arithmeticity of holonomy groups of Lie foliations, J. Amer. Math. Soc., 1 (1988),
35–58.
[2] G. Meigniez and H. Nozawa, Rigidity of Riemannian foliations with locally symmetric leaves,
in preparation.
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Ergodicity of embedded singular laminations

Carlos Pérez Garrandés

University of Oslo-Universidad Complutense

It was proven by Fornæss and Sibony [1] that any minimal lamination by Riemann surfaces
without singularities in the complex projective plane supports a unique directed harmonic pos-
itive current of mass one which can be understood as a global attractor of the leaves via an
averaging process à la Ahlfors.

This situation is not special of the projective plane and a similar result can be stated for
every minimal lamination without closed currents embedded in a homogeneous compact Kähler
surface [4]. These results also hold if we allow hyperbolic singularities in the lamination [2], [3].

The proof of these results relies in the intersection theory introduced in [1] and a care-
ful local study of the behaviour of the laminations with respect to certain suitable family of
automorphisms.

[1] J. E. Fornæss and N. Sibony. Harmonic currents of finite energy and laminations. Geom.
Funct. Anal., 15(5):962-1003, 2005
[2] John Erik Fornæss and Nessim Sibony. Unique ergodicity of harmonic currents on singular
foliations of P2. Geom. Funct. Anal., 19(5):1334-1377, 2010.
[3] Carlos Pérez-Garrandés. Ergodicity of laminations with singularities in Kähler surfaces.
Math. Z., 275(3-4):1169-1179, 2013.
[4] Carlos Pérez-Garrandés. Directed harmonic currents for laminations on certain compact
complex surfaces. Int. J. Math. DOI: 10.1142/S0129167X14500323

The mixed Yamabe problem for harmonic foliations

Vladimir Rovenski

Mathematical Department, University of Haifa, Israel

The mixed scalar curvature of a foliation F with normal distribution D on a Riemannian
manifold (M, g) is the averaged mixed sectional curvature. It is just a function and belongs to
the extrinsic geometry of a pair (F ,D). We apply the biconformal deformation for prescribing
the (leafwise) constant mixed scalar curvature of a harmonic foliation. The problem is solvable
when the leaves are compact and M is fibered instead of being foliated. For dimF > 1, we use
the nonlinear heat type equation and spectral parameters of the leafwise Schrödinger operator.
For dimF ≤ 3, we apply perturbations of the ground state.

[1] V. Rovenski and L. Zelenko, Prescribing the mixed scalar curvature of a foliation, pp. 79–
110, in “Geometry and its Applications”, Springer Proc. in Mathematics & Statistics, Vol. 72,
Springer, 2014.
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Coarse homology of leaves of foliations

Robert Schmidt

Ludwig-Maximilians-Universität München

In my talk, I will investigate which restrictions are imposed on non-compact Riemannian man-
ifolds that are quasi-isometric to a leaf in a foliation of a compact manifold. It was shown by
Paul Schweitzer [1] that every non-compact manifold carries a metric such that the resulting Rie-
mannian manifold cannot be quasi-isometric to a leaf in a codimension 1 foliation of a compact
manifold. We show that the coarse homology of these non-leaves constructed by Schweitzer is
always non-finitely generated. This motivates the question whether every Riemannian manifold
which is quasi-isometric to a leaf in a compact manifold has finitely generated coarse homology.

We give a fully negative answer to this question: Firstly, we show that there exists a large
class of two-dimensional leaves in codimension one foliations that have non-finitely generated
coarse homology. Moreover, we improve Schweitzer’s construction by showing that every Rie-
mannian metric can be deformed to a codimension one non-leaf without affecting the coarse
homology. In particular, we find non-leaves with trivial coarse homology.

[1] P. Schweitzer, S.J., Riemannian manifolds not quasi-isometric to leaves in codimension one
foliations, Ann. Inst. Fourier 61 (2011), no. 4, 1599–1631.

A GENERALIZATION OF NOVIKOV’S THEOREM ON THE
EXISTENCE OF REEB COMPONENTS IN CODIMENSION ONE

FOLIATIONS

Paul A. Schweitzer, S.J.

with Fernando Alcalde Cuesta and Gilbert Hector

PUC-Rio de Janeiro

We study the structure and existence of generalized Reeb components in codimension one
foliations. We show that every connected homological (m − 2)-dimensional vanishing cycle in
a C2 transversely oriented codimension one foliation F of a closed m-manifold M lies on the
boundary of a homological Reeb component. This extends Novikov’s famous theorem to higher
dimensions. The homological vanishing cycle is given as an immersion φ : B× [0, 1]→M , where
B is a connected oriented (m − 2)-manifold, such that Bt = φ(B × {t}) lies on a leaf Lt for
every t, 0 6= [B0] ∈ Hm−2(L0), and [Bt] = 0 ∈ Hm−2(Lt) for every t > 0. A generalized Reeb
component with connected boundary is a compact foliated manifold whose interior fibers over
the circle with the leaves as fibers and whose boundary is a single compact leaf.

The proof begins by showing the existence of a transverse invariant measure for F . Sackst-
eder’s Theorem and the C2 hypothesis show that the support of the measure is a finite union
of compact leaves, in fact, a single compact leaf. Using Dippolito and Hector’s octopus decom-
position of an open saturated set, we show that union of the leaves Lt for t > 0 is in fact the
interior of a generalized Reeb component with the leaf L0 as the boundary.

This is a partial result of twenty years of research efforts. We hope in the future to complete
the proof in the general case, when the vanishing cycle is not connected and consequently L0

may be a finite union of leaves.
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Existence of foliations of two entropy types

Pawe l G. Walczak

Katedra Geometrii, Wydzia l Matematyki i Informatyki
Uniwersytet  Lódzki

 Lódź, Poland

It has been proved by Likorish (1965), Wood (1969) and Thurston (1976) that all the closed
manifolds with zero Euler characteristic admit foliations of codimension one. In 1988, Ghys,
Langevin and the speaker introduced the notion of geometric entropy for foliations of closed
Riemannian manifolds. From the definition it follows easily that the conditions “zero entropy”
or “positive entropy” do not depend on Riemannian structures. So, without referring to Rie-
mannian structures, one has just two types of foliations: these with zero entropy and those with
positive entropy.

In the talk, we shall discuss the problem of existence of codimension-one foliations of these
two types.

[1] E. Ghys, R. Langevin, P. Walczak, Entropie géométrique des feuilletages, Acta Math. 160
(1988), 105 – 142.
[2] W. Likorish, A foliation for 3-manifolds, Ann. of Math. 82 (1965), 414 – 420.
[3] W. Thurston, Existence of codimension-one foliations, Ann. of Math. 104 (1976), 249 – 268.
[4] P. Walczak, Dynamics of Foliations, Groups and Pseudogroups, Birkhäuser 2004.
[5] J. Wood, Foliations on 3-manifolds, Ann. of Math. 89 (1969), 336 – 358.

Maps between foliated Riemannian manifolds

Robert Wolak

Wydzial Matematyki i Informatyki, Uniwersytet Jagiellonski

10 years ago with Jerzy Konderak we published our first paper on maps between Riemannian
foliated manifolds, Transversally harmonic maps between manifolds with Riemannian foliation,
Quart. J. Math. (Oxford) 54 (2003), 335–354. Jerzy Konderak’s death in 2005 terminated
our potentially fruitful cooperation. The investigation of transversally harmonic maps has been
taken up by several mathematicians. I will review the results on these maps obtained by various
authors in the last ten years.
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Directional approach to dynamics of foliations

Andrzej Bís

University of Lodz, Poland

Geometric entropy in a sense of Ghys-Langevin-Walczak [1] describes global dynamics of a
foliation. More subtle approach to foliation dynamics we obtain considering paths in Cayley
graph of holonomy pseudogroups. We will describe a generalization of the notion of local measure
entropy, introduced by Brin and Katok [2] for a single map, to paths. It provides measure entropy
description of a foliated manifold and indicates areas where entropy focuses. Finally, we apply
the theory of dimensional type characteristics of a dynamical system, elaborated by Pesin [3],
to obtain relation between topological entropy of a path and its local measure entropies.

[1] E. Ghys, R. Langevin and P. Walczak, Entropie géométrique des feuilletages, Acta Math.
160 (1988), 105–142.
[2] M. Brin, A. Katok, On local entropy, in Geometric Dynamics, Lecture Notes in Math., Vol.
1007, Springer, Berlin (1983), 30–38.
[3] Ya. Pesin, Dimension Theory in Dynamical Systems, Chicago Lectures in Mathematics, The
University of Chicago Press, Chicago, 1997.

Canonical foliation on Weil bundle

Basile Guy Richard Bossoto

Marien Ngouabi University

Let be M a smooth manifold, A a local algebra and MA the associated Weil bundle. We
construct the canonical foliation on MA and we show that the canonical foliation on the tangent
bundle TM is the foliation defined by his canonical vector field.

Manifolds with G2 structures and (almost) contact structures

Hyunjoo Cho

National Center for Theoretical Sciences

I will first give a brief introduction to seven-dimensional Riemannian manifolds withG2-structures
and G2-manifolds which behave very similarly to Calabi-Yau manifolds. I will show that any
seven-dimensional manifold with G2-structures has an almost contact structure, and then discuss
relations between contact structures and G2-structures on it.
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Lifting transverse symplectic structures.

Andrzej Czarnecki

Jagiellonian University

The canonical lift of a foliation to the bundle of transverse orthonormal frames is one of the
most fundamental procedures in Riemannian foliations. It can be, of course, performed for any
holonomy invariant transverse geometric structure. We will present some facts about lifts of
transversally symplectic foliations.

Contracting boundary of Hadamard laminations

Maciej Czarnecki

Uniwersytet  Lódzki,  Lódź, Poland

An Hadamard lamination is a lamination of CAT (0) space by Hadamard manifolds. Leaves
as well as a foliated space have natural ideal boundaries and it is natural to study a way of
embedding leaf boundaries into boundary of the space. In case of Hadamard foliations this
problem was solved for hyperbolic space foliated by leaves of short second fundamental form
(in fact. for hyperbolic leaves). New results of Sultan and Charney allow to reject the main
difficulty i.e. different behaviour in almost Euclidean case. They defined contracting boundary
of CAT (0) space eliminating ends of non–hyperbolic geodesics. In particular, quasi–isometries
of CAT (0) spaces extend to their contracting boundaries.

We shall see geometric properties of an Hadamard lamination with CAT (0) transversal and
prolong this lamination into contracting boundary.

[1] R. Charney, H. Sultan, Contracting boundary of CAT (0) space, arXiv: 1308:6615
[2] M. Czarnecki, Hadamard foliations of Hn, Diff. Geom. Appl. 20 (2004), 357–365

Liouville type theorem for transversally biharmonic maps

Min Joo Jung

Jeju National University, Republic of Korea.

We study Liouville type theorem for transversally biharmonic maps as follows: Let (M, g,F)
be a complete foliated Riemannian manifold and all leaves be compact. Let (M ′, g′,F ′) be
a foliated Riemannian manifold of non-positive transversal sectional curvature. Assume that
V ol(M) is infinite, then every transversally biharmonic map φ : (M, g,F) → (M ′, g′,F ′) of∫
M

(|τb(φ)|4 + |τb(φ)|2 + |dTφ|2)µM <∞ is transversally constant.
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Geometry of non-algebraic leaves of polynomial foliations in C2

Nataliya Goncharuk

with Yury Kudryashov

NRU Higher School of Economics, Moscow, Russia

Consider the set An of all polynomial vector fields of degree n in C2,

ẋ = P (x, y)ẏ = Q(x, y),

where degP = degQ = n. The phase portrait of such vector field (with complex time) is a
holomorphic singular foliation. Its leaves are Riemann surfaces; in a generic case, all leaves are
dense in C2.

The topological type of (some or generic) leaf of a generic foliation is still unknown. We
obtained some results in this direction.

We proved that in a dense subset of An, any foliation has a leaf with at least (n+1)(n+2)
2 − 4

handles.
We also proved that for a generic vector field with a symmetry P (x, y) = P (−x, y), Q(x, y) =

−Q(−x, y), almost all leaves have infinite number of handles.
Our last result concerns limit cycles — loops on the leaves with non-identity holonomy

maps. A classical theorem due to Yu. Ilyashenko says that a generic vector field from An

has a countable set of homologically independent limit cycles. The limit cycles constructed
by Ilyashenko converge to the infinite line in CP 2, and their multipliers (derivatives of their
holonomy maps) tend to 1.

We prove that a generic foliation from An has a countable set of homologically independent
limit cycles which are uniformly bounded in C2, and their multipliers tend to infinity.

On embedding of Morse-Smale Diffeomorphisms in Flows

Elena Gurevich

N. I. Lobachevskii State University of Nizhnii Novgorod, Russia

A Cr-diffeomorphism (r ≥ 1) f : Mn →Mn on a smooth connected closed manifold of dimension
n embeds in a Cl-flow if f is the time-one map of such a flow. J. Palis showed that the set of
Cr-diffeomorphisms that embed in C1-flows is a set of first category in Diffr(Mn). In the same
time, the structural stability of Morse-Smale diffeomorphisms leads to existence of open sets of
diffeomorphisms that embed in a topological flow.

In [1] were stated the following necessary conditions of embedding of a Morse-Smale cascade
f in a topological flow (Palis conditions): (1) the non-wandering set of f consists only of fixed
points; (2) f restricted to each invariant manifold of its fixed points is orientation preserving; (3)
for any fixed points p, q having non-empty intersection of invariant manifolds, the intersection
does not contain compact components. It was also shown in [1] that conditions (1)-(3) are
sufficient in case n = 2.

For case n = 3 in [2] it was discovered that there is an additional obstacle for the Morse-
Smale cascade to embed in a flow and obtained the criteria of embedding such diffeomorphisms
in topological flows.

In contrast with case n = 3, the following result holds for greater dimension.
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Theorem. If a Morse-Smale diffeomorphism f : Sn → Sn has no heteroclinical intersection
and satisfies Palis conditions then f embeds in a topological flow.
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Notice concerning cohomology of Lie groupoids over foliations

Jose Oliveira

University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

Every Lie groupoid G over a smooth manifold M determines, in a canonical way, a foliation
F on M . The de Rham cohomology of G is, by definition, the cohomology of left invariants
forms on F . When the foliation F is transversally complete, the Lie groupoid G is locally
trivial. Under these hypothesis, we define the notion of piecewise de Rham cohomology of G
over a smooth triangulation of M and show that the piecewise de Rham and the de Rham
cohomology of G are isomorphic.
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Energy function for structurally stable cascades with expanding
attractors and contracting repellers of codimension 1

Olga Pochinka

State University Higher School of Economics

The results were obtained together with V. Grines.
We consider the class G of structurally stable diffeomorphisms on 3-manifolds each nontrivial

basic set of which has codimension 1 and it is either an expanding attractor or a contracting re-
peller. According to C. Conley [1], a Lyapunov function for a structurally stable diffeomorphism
is a continuous function that decreases along wandering trajectories and constant on basic sets.
A smooth Lyapunov function is called an energy function if the set of critical points coincides
with the nonwandering set of the diffeomorphism.
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The main result of this paper is the following theorem, which is based on [2], [3].
Theorem. For any diffeomorphism from class G there is an energy function, which is a

Morse function out of nontrivial basic sets.
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On the lifted foliation on the transverse vector bundle

Morteza Mirmohammad Rezaii

with N. shojaee

Faculty of Mathematics and Computer Science, Amirkabir University (Polytechnic of Tehran),
Tehran, Iran

In this work, the transverse vector bundle Q, on a foliated manifold (M,F) is described.
We study its structure as a smooth manifold Q(M,F). The lifted foliation F∗ in Q(M,F) is
defined and we find a relation between bundle-like metrics on M and Riemannian foliations on
Q(M,F). We try to use this foliated model to make a contact structure in Q(M,F) and through
this work, we obtain some other results.

23



24


