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Abstract

Spectral numerical methods are proposed to solve the time evolution of a convection problem
in a 2D domain with viscosity strongly dependent on temperature. We have considered periodic
boundary conditions along the horizontal coordinate which introduce the O(2) symmetry into the
setting. This motivates the use of spectral methods as an approach to the problem. The analysis
is assisted by bifurcation techniques such as branch continuation, which has proven to be a useful,
and systematic method for gaining insight into the possible stationary solutions satisfied by the
basic equations. Several viscosity laws which correspond to different dependences of the viscosity
with the temperature are investigated. Numerous examples are found along the branching dia-
grams, in which stable stationary solutions become unstable through a Hopf bifurcation. In the
neighborhood of these bifurcation points, the scope of our techniques is examined by exploring
transitions from stationary regimes towards time dependent regimes.

Our study is mainly focused on viscosity laws that model an abrupt transition of viscosity
with temperature. In particular, both a smooth and a sharp transition are explored. Regarding
the stationary solutions, the way in which different parameters in the viscosity laws affect the
formation and morphology of thermal plumes is discussed. A variety of shapes ranging from spout
to mushroom shaped are found. Some stationary stable patterns that break the plume symmetry
along their vertical axis are detected, as well as others that correspond to non-uniformly dis-
tributed plumes. The main difference between the solutions observed for the smooth and sharp
transition laws is the presence in the latter case of a stagnant lid, which is absent in the first law.
In both cases, we report time-dependent solutions that are greatly influenced by the presence
of the symmetry and which have not previously been described in the context of temperature-
dependent viscosities, such as travelling waves, heteroclinic connections and chaotic regimes.
Notable solutions are found for the sharp transition viscosity law in which time-dependent solu-
tions alternate an upper stagnant lid with plate-like behaviors that move either towards the right
or towards the left. This introduces temporary asymmetries on the convecting styles. This kind
of solutions are also related to the presence of the O(2) symmetry and constitute an example of a
plate-like convective style which is not linked to a subduction process. These findings provide an
innovative approach to the understanding of convection styles in planetary interiors and suggest
that symmetry may play a role in describing how planets work.

Finally, the centrifugal and viscosity effects in a rotating cylinder with large Prandtl number
are numerically studied in a regime where the Coriolis force is relatively large. Our focus is on
aqueous mixtures of glycerine with mass concentration in the range of 60%-90%, and Rayleigh
number values that extend from the onset, where thermal convection is in the so-called wall
modes regime, in which pairs of hot and cold thermal plumes ascend and descend in the sidewall
boundary layer, to values in which the bulk fluid region is also convecting. The mean viscosity,
which varies faster than exponentially with variations in the percentage of glycerine, leads to
a faster than exponential increase in the Froude number for a fixed Coriolis force, and hence
an enhancement of the centrifugal buoyancy effects with significant dynamical consequences are
described.
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Resumen

En esta tesis proponemos métodos numéricos espectrales, para resolver la evolución tempo-
ral de un problema de convección en un dominio 2D con viscosidad fuertemente dependiente de
la temperatura. Las condiciones de contorno periódicas a lo largo de la coordenada horizontal
introducen la simetŕıa O(2) en el problema lo que motiva el uso de métodos espectrales en es-
te contexto. Realizamos un análisis de las soluciones mediante técnicas propias de la teoŕıa de
bifurcaciones, y constatamos que son un método útil y sistemático para describir el panorama
de las soluciones estacionarias que satisfacen las ecuaciones básicas. Investigamos varias leyes de
viscosidad que corresponden a diferentes dependencias de ésta con la temperatura. A lo largo de
los diagramas de bifurcación se encuentran numerosos ejemplos en los que la solución estacionaria
estable se vuelve inestable a través de una bifurcación Hopf. En las proximidades de esos puntos
examinamos el alcance de nuestras técnicas, explorando la transición desde reǵımenes estaciona-
rios a reǵımenes dependientes del tiempo.

Nuestro estudio se centra principalmente en las leyes de la viscosidad que modelan una transi-
ción abrupta de la viscosidad con la temperatura. En particular, se exploran tanto una transición
suave como una brusca. En cuanto a las soluciones estacionarias, se discute cómo los diferentes
parámetros en las leyes de viscosidad afectan a la formación y la morfoloǵıa de las plumas térmi-
cas. Se encuentran una variedad de la formas que van desde forma de protuberancia (“spout”) a
la forma de seta. Se detectan algunos patrones de soluciones estacionarias estables que rompen
la simetŕıa de la pluma a lo largo de su eje vertical y otros que se corresponden con plumas
distribuidas de manera no uniforme. La principal diferencia entre las soluciones observadas para
las leyes de transición suave y brusca es la presencia, con esta última ley, de una capa estan-
cada que no está presente con la primera. En ambos casos mostramos soluciones dependientes
del tiempo que están muy influenciadas por la presencia de la simetŕıa y que no se han descrito
previamente en el contexto de convección con viscosidad dependiente de la temperatura. Estas
soluciones son por ejemplo ondas viajeras, conexiones heterocĺınicas y reǵımenes caóticos. Para
transiciones bruscas de la ley de viscosidad destacan soluciones dependientes del tiempo, en las
que se alternan una capa superior estancada, con una capa o placa que se mueve ŕıgidamente
hacia la derecha o la izquierda. Esto introduce estilos de convección que son asimétricos en el
tiempo. Este tipo de soluciones también están relacionadas con la presencia de la simetŕıa O(2)
y constituyen un ejemplo de convección en forma de placa que no está vinculada a un proceso
de subducción. Estos resultados aportan un enfoque innovador para la comprensión de estilos
de convección en el interior de planetas y sugieren que la simetŕıa puede desempeñar un papel
importante en la descripción de cómo funcionan.

Por último, se estudian numéricamente los efectos centŕıfugos en un cilindro que rota, en un
régimen en el que la fuerza de Coriolis es relativamente grande y en el que el fluido tiene un número
de Prandtl alto. Nuestra atención se centra en mezclas acuosas de glicerina con concentraciones
de masa en el intervalo de 60 %-90 % y valores de número de Rayleigh que se extienden desde el
inicio de la convección térmica; que son el denominado régimen de modos de pared, donde pares
de plumas calientes y fŕıas ascienden y descienden en la capa ĺımite de la pared lateral; hasta
valores en los que la convección está completamente desarrollada en toda la celda. El aumento
de la viscosidad media, que vaŕıa con el porcentaje de glicerina considerado, conduce, para una
fuerza de Coriolis fija, a un aumento en el número de Froude y por lo tanto, a un incremento de
los efectos centŕıfugos para los que describimos su impacto en la dinámica.
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Rafa, compañero de despacho y vecino en la residencia, siempre con una historia que contar, una
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CHAPTER 1

Introduction

This Ph.D Thesis is based on a compendium of articles and is structured as follows: in this
chapter we present an overview of the contents from the geophysical and mathematical points of
view; the importance of the issues discussed and the state of the art so far. We also describe
the physical setup of the problems under study. In Chapter 2, the specific objectives of the study
are described. Chapter 3 presents the results as a series of articles written in collaboration with
other authors while preparing this Ph.D. A discussion of the results is provided in Chapter 4.
Finally, Chapter 5 presents the conclusions.

1.1. Motivation

Thermal convection of the upper mantle is the driving force of plate tectonics, which causes
the continental drift [36, 76, 86, 107]. In recent years, the study of mantle convection has focused
on understanding the generation and evolution of plate tectonics [5], although there are still many
questions that remain unanswered. As regards the dynamics of the mantle, studies exist about
how convection is affected by variations in the basic equations, particularly those that look for
a better physical and geochemical approximation to mantle properties [7, 62, 91]. Observations
indicate that, in geological time scales, the mantle deforms like a fluid. If the mantle is treated
as such, it is necessary to model properties such as thermal conductivity, density or viscosity.
For instance, in mantle convection viscosity has typically been considered to depend strongly on
temperature, although it may also be dependent on another magnitudes such as depth [11], a
combination of both depth and temperature [6], or pressure. In addition to viscosity, other fluid
properties may depend on temperature such as density, thermal diffusivity or thermal conduc-
tivity. However, since consideration of the effect of simultaneous variations on all the properties
fails to provide a clear understanding of the exact role played by each one of these properties, in
our study we consider solely the effects due to the variability of viscosity.

Geophysical applications arising from the numerical study of convection problems with vis-
cosity strongly dependent on temperature make it a subject of great interest. Furthermore from
the mathematical point of view it has recently been proven that this is a well-posed problem
[50, 112] for viscosities which are smooth bounded positive analytical functions of temperature,
and therefore stands a good chance of solution on a computer using a stable algorithm.

7
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1.2. The geophysical point of view

In the classical Rayleigh-Bénard convection problem, heat is applied uniformly from below
and the conductive solution (also called the basic solution), which is the simplest stationary so-
lution to the problem, is characterized by a fluid at rest with a constant gradient of temperature.
This solution becomes unstable for a vertical gradient of temperature beyond a critical threshold.
Above this threshold, the convective motion settles in and new patterns are observed; the fluid
begins to move and form convection rolls that circulate alternately in a clockwise or a counter-
clockwise direction (see Figure 1.1).

g

Figure 1.1. Rayleigh-Bénard convection.

The Earth’s interior behaves as a convective fluid on geological scales. However, in some
aspects it differs from classical Rayleigh-Bénard convection. For instance, the physical properties
of the mantle include a complex rheology and variable viscosity that may depend on tempera-
ture or other magnitudes such as depth [11], a combination of both depth and temperature [6],
or pressure. The variability of the viscosity introduces strong couplings between the momentum
and heat equations, as well as important nonlinearities into the whole problem. Transitions in the
viscosity are important for describing melting and solidification processes which are significant
in magma chamber dynamics [8, 9], in volcanic conduits [35, 75], in the formation of chimneys
in mushy layers [21], in metal processing in industry (see [95], for example), and so on. In phase
transitions, in addition to viscosity, other fluid properties such as density or thermal diffusivity
may change abruptly.

Most studies on convection in the Earth’s mantle employ the Boussinesq approximation, which
assumes an incompressible mantle. However, the mantle is compressible due to changes in the
density, which increases towards the Earth interior. Typically, density may depend on depth,
temperature and/or pressure. Studies in which numerical analysis of compressible convection are
performed indicate that density stratification has a stabilizing effect [61], producing upwelling
plumes weaker than downwelling plumes and influencing the thermal boundary layer [67]. Ther-
mal conductivity may also be variable, but this dependence has generally received less attention
than that of viscosity, as the latter is much stronger in the Earth’s mantle. The dependence of
conductivity on temperature introduces new nonlinearities into the heat equation, which may
lead to diverse dynamics [55]. Conductivity that decreases with temperature makes convection
more chaotic and time dependent [34, 115].

The variety of physical properties causes diverse types of convection. Layered convection
is due to endothermic phase changes in the minerals that constitute the mantle’s interior [73].
Large viscosity contrasts in fluids with temperature-dependent viscosity lead to stagnant lid con-
vection [81, 99], such as that presented in the lithosphere of other bodies in the solar system such
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as the Moon, Venus or Mars [100, 101]. Regarding the subduction initiation, numerical results
[5, 98, 104, 106] suggest that this is only possible if the stiff upper layers of the lithosphere are
weakened by brittle fracture. Several mechanisms have been proposed for driving the motion of
the lithospheric plates. Forsyth and Uyeda [38], for instance, conclude that plate-like motion is
produced by the sinking slab that pulls the plate in the subduction process due to an excess of
lithosphere density.

In this work, we consider solely the effects due to the variability of viscosity. Viscosity is a
measure of the resistance of a fluid to gradual deformation, and in this sense very viscous fluids
have a more rigid behavior than less viscous fluids. When examining the transition of viscosity
with temperature, we focus on the global fluid motion when some parts of it tend to be more
rigid than others. Disregarding the variations on density in this transition moves us away from
instabilities caused by abrupt density changes, such as the Rayleigh-Taylor instability in which a
denser fluid over a lighter one tends to penetrate it by forming a fingering pattern.

The study of symmetries in classical convection (i.e. in fluids with constant viscosity and
thermal diffusivity) has been the object of much attention [3, 29, 45, 63, 64, 65, 79, 84], because
symmetric systems typically exhibit more complicated behavior than non-symmetric systems, and
there exist numerous novel dynamical phenomena whose presence is fundamentally related to the
presence of symmetry, such as traveling waves or stable heteroclinic cycles [2, 29, 31, 49]. The
counterpart of this problem in fluids with viscosity depending on temperature has received less
consideration. Our focus is on a convection problem in a 2D domain, in which viscosity depends
on temperature in the presence of the O(2) symmetry and infinite Prandtl number. Our problem
is idealized with respect to realistic geophysical flows occurring in the Earth’s interior, since these
are 3D flows moving in spherical shells [12, 13]. Under these conditions, the symmetry present in
the problem is formed by all the orientation, preserving rigid motions of R3 that fix the origin,
which is the SO(3) group [18, 44, 59]. The effects of the Earth’s rotation are negligible in this
respect and do not break this symmetry, since the high viscosity of the mantle renders the Coriolis
number insignificant. The link between our simplified problem and these realistic setups is that
the O(2) symmetry is isomorphic to the rotations along the azimuthal coordinate, which form a
closed subgroup of SO(3). In addition, the O(2) symmetry is present in systems with cylindrical
geometry, which provide an idealized setting for volcanic conduits and magma chambers. SO(2)
symmetry is also present in 3D flows moving in spherical shells which rotate around an axis. The
interest of 2D numerical studies for representing 3D time-dependent thermal convection with
constant viscosity is addressed in [96]. These authors report that in turbulent regimes at high
Rayleigh numbers the flow structure and global quantities such as the Nusselt number and the
Reynolds number show a similar behaviour in 3D and 2D simulations in which high values of the
Prandtl number are concerned. These results therefore suggest that our simulations may well
be illustrative for the 3D case, since although they are far from a turbulent regime and do not
correspond to the case of constant viscosity, they have been performed according to the infinite
Prandtl number approach. The impact of the symmetry on the solutions displayed in convection
problems with viscosity dependent on temperature is addressed in Sections 3.1, 3.2 and 3.3.

Convective instabilities are also crucial in other geophysical contexts such as the atmosphere
and the ocean. Motivated by the interest of studying the rotational effect (gravitational and
centrifugal buoyancy force), which is negligible in the Earth’s interior, we study confined rotating
convection in 3D fluids in which viscosity weakly depends on temperature at large Prandtl num-
ber. Rotating Rayleigh-Bénard convection is currently the object of much additional attention
due to the availability of new modern experimental facilities and significant advances in its numer-
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ical simulation [66, 103, 116]. For the most part, these studies are focused on low and moderate
Prandtl numbers, motivated primarily by astrophysical interests [102]. Large Prandtl number
systems are also of much interest, particularly when the working fluids are alcohols, silicone oils
and exotic gases under high pressure. For this reason it is desirable to access high-Prandtl number
regimes both in laboratory experiments and in numerical or theoretical models in order to gain
insight into some of the physical processes involved. Some theoretical studies have been conducted
in the limit of infinite Prandtl number [20, 33, 114], but these neglect two aspects of rotating
convection which may be dominant, especially in a realistic physical setting; namely, confinement
and centrifugal buoyancy [4, 53, 56, 68, 74, 92]. In our study we focus on examining rotating
effects in a 3D cylinder containing aqueous mixtures of glycerine with large Prandtl number. The
Prandtl number is large because the viscosity in these fluids is also very large. In the particular
physical setting considered, which fixes the Coriolis number (see definition in (1.10)), centrifugal
effects (represented by the Froude number) are specially important, because they increase with
the viscosity precisely because the Coriolis number is fixed. We study the centrifugal effects
on the wall-modes regime. These are pairs of hot and cold thermal plumes which ascend and
descend in the cylinder sidewall boundary layer, essentially forming a one-dimensional pattern
characterized by the number of hot/cold plume pairs. These results are presented and discussed
in Section 3.4.

1.3. The mathematical point of view

The ocean, the atmosphere and the interior of the planets can be described by the equations
of fluid dynamics because they behave as fluids. Although the equations of fluid mechanics were
formulated more than two centuries ago, the structure of their solutions still remains one of the
most studied problems in mathematics, due to the difficulties introduced by their nonlinear terms.

The existence of critical conditions giving rise to an instability is related to the presence
of a bifurcation. Bifurcation theory provides a theoretical framework for describing a range of
solutions to nonlinear dynamical systems that depend upon physical parameters that may vary
causing the system to show different states. Let us denote by µ a vector of scalars that represent
these physical parameters. A local bifurcations point can be detected from a stability change. Let
us consider the evolution problem u′ = G(µ, u), for a certain class of operators G, which depend
on µ, the scalars related to physical parameters, and acts on u, the physical state. Let us consider
u0, an equilibrium solution that satisfies G(µ, u0) = 0. The principle of linearized stability states
that for a fixed µ if all eigenvalues λ of the linearized operator G′(µ, u0) (linearized with respect
to u) satisfy <(λ) ≤ a < 0 for some a independent of λ, then the equilibrium solution u0 of the
equation u′ = G(µ, u) is stable. The principle is well-established for finite systems of ordinary
differential equations, corresponding to the equation u′ = G(µ, u) on a finite-dimensional space;
the result is known as Lyapounov’s Theorem. In this case, the condition <(λ) ≤ a < 0 can be
replaced by the simpler condition <(λ) < 0 for all λ. The two conditions are equivalent because
there is a finite number of eigenvalues. Thus if they all have negative real parts, there is an
eigenvalue λ0 with the largest real part, and we have <(λ) ≤ <(λ0) < 0 for all λ. For operators
on infinite-dimensional spaces, the condition <(λ) ≤ a < 0 is stronger than <(λ) < 0, since there
may be a sequence of eigenvalues tending to zero from below; the stronger condition is needed
to exclude “marginal stability” (eigenvalues with |<(λ)| arbitrarily small), which can be turned
into instability by small perturbations.

In this thesis, we work with partial differential equations, and thus with infinite-dimensional
spaces. However the considered system is highly dissipative and in a finite-sized domain, and for
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this reason it behaves as a finite dimensional system. We approach the stationary solutions u0 in
our setup by means of a spectral collocation technique in a spatial grid. We analyse the stability
of these solutions by means of a linear stability analysis, the purpose of which is to determine
the sign of the real part of the eigenvalue λ. If it is negative, the perturbation decays and the
stationary solution is stable, while if it is positive, the perturbation increases and the stationary
solution is unstable. The bifurcation point corresponds to the parameter set µ, in which <(λ) = 0,
and =(λ) = 0 (stationary bifurcation) or =(λ) 6= 0 (Hopf bifurcation). Representations of different
types of stationary bifurcations can be seen in Figure 1.2. In our setting, due to the presence of
the symmetry there always exists a zero eigenvalue which is related to a neutral dynamically non
active direction [31].

Pitch-fork supercritical

µ

u 0

Pitch-fork subcritical

µ

u 0

saddle-node supercritical

µ
u 0

Figure 1.2. Branching diagrams of local Bifurcations. The dashed branches corre-
spond to unstable equilibrium solutions, while the solid ones are stable equilibrium
solutions.

Although rigorous results exist on local bifurcation theory in PDE (see [22, 89]), in practice it
appears difficult to use such results to answer specific questions about the solutions, e.g. to deter-
mine the number of non-constant co-existing steady states. Rigorous computational methods have
recently attempted to fill the gap between the above-mentioned theoretical and computational
advances. For instance, Park [87, 88] examines the bifurcation and structure of the solutions using
the theory of attractor bifurcation developed by Ma and Wang [71, 72]. Other rigorous approaches
to this problem by Lessard et al. [10, 32, 39, 109], employ finite dimensional projections by using
spectral expansions, and then approximations to construct a global continuous curve, eventually
applying the uniform contraction principle on tubes to reach a conclusion on the existence of a
unique smooth solution curve. Typically, the systems analyzed with these techniques are simpler
than ours. Non rigorous numerics is the first step to take in the analysis of the problems under
consideration, which have not been studied before and have a higher degree of complexity.

We conduct our study by combining bifurcation techniques with time-evolution simulations.
For the 2D problem, it has been proven in in recent works [50, 112] that, from the mathematical
point of view, the convection problem that concerns us in Sections 3.1, 3.2 and 3.3 is a well-posed
problem. Well-posedness has been proven for dependences of viscosity with temperature that are
bounded positive analytic functions. Thus, we expect a stable algorithm that approaches the
time-evolution problem to exist.

The problem discussed in Sections 3.1, 3.2 and 3.3 is very stiff, since it is in fact a set of
differential algebraic equations, and for this reason it is a partial differential system for which
certain numerical methods for solving the equations are numerically unstable, unless the step
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size is taken to be extremely small. The term “stiff” first appeared in the paper by Curtiss and
Hirschfelder [28] on problems in chemical kinetics. Without giving a precise definition, they call
a differential equation stiff if the implicit Euler method performs much better than the explicit
Euler method. This article is also famous because it introduces the backward differentiation for-
mulas (BDF). The presence of different time scales in the time evolution is a distinctive feature of
stiff problems. Application of standard methods for the solution of these problems, for example,
the Euler method, explicit Runge-Kutta methods, or Adams-Bashforth can exhibit instability
though other methods may produce stable solutions. Methods intended to solve stiff problems
efficiently do more work per step than nonstiff methods and usually, they are implicit. Currently,
the most widely used methods for solving stiff problems are the linear multistep methods. In
particular, as reported in Section 3.1, we have successfully implemented a semi-implicit BDF
scheme to deal with the problem under consideration.

Our numerical approach uses spectral methods to expand the solution in the spatial coordi-
nates. These methods are extensively used in the numerical simulation of convection problems,
since they are highly accurate, although they are not very popular in the simulation of con-
vection problems with temperature-dependent viscosity [60], especially when this dependence is
very strong, as is the case in our first setup, because they are reported to have limitations when
handling lateral variations in viscosity. Alternatively, preferred schemes exist in which the basis
functions are local; for example, finite difference, finite element and finite volume methods. The
works by [6, 42], for instance, have treated this problem in a finite element discretization in prim-
itive variables, while in [23, 80] finite differences or finite elements are used in the stream-function
vorticity approach. Spectral methods have been successfully applied to model mantle convection
with moderate viscosity variations in, for instance, [14, 19]. These works do not use the primitive
variables formulation, and deal with the variations in viscosity by decomposing it into a mean
(horizontally averaged) part and a fluctuating (laterally varying) part. Our approach to the first
setup, described next, addresses the variable viscosity problem by proposing a spectral approxi-
mation in primitive variables without any decomposition on the viscosity. The main novelty in
this study is the extension of the spectral methodology discussed in [90], valid only for stationary
problems, for solving the time-dependent problem.

In Section 3.1, the use of spectral techniques to solve the proposed problem numerically is
justified, and the motivation for the use of these techniques in preference to others is discurred.
Spectral methods may be particularly suitable for dealing with problems involving symmetries,
as some solutions with approaches based on other spatial discretizations might be overlooked. In
Section 3.2, the full partial differential equations system is analyzed by means of direct numer-
ical simulations and bifurcation analysis techniques, and we also show that typical solutions of
systems with symmetries, as previously reported in diverse contexts [2, 31, 110], are also present
in convection with temperature-dependent viscosity. We report the presence of travelling waves
and limit cycles near heteroclinic connections after a Hopf bifurcation. The viscosity law (1.8)
considered in Section 3.3 is similar to (1.7) studied in Section 3.2, the main difference being the
size of the temperature gap in which the viscosity changes. The results described in Section 3.3
confirm the role of symmetry in the physical configuration of the problem. We show that in
our setting convective processes exists which include plate-like motions that alternate in time
with stagnant-lid regimes. Some of these transitions include bursts in which the solution releases
energy to accommodate different spatial patterns.

The spectral techniques also are used in Section 3.4 in a rotation convection problem. This
problem, is not so stiff as the one discussed in the previous sections and is solved with the second-
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order time-splitting method proposed in [58]. The spatial discretization of this fully 3D problem
utilizes a Galerkin–Fourier expansion in the azimuthal coordinate and a Chebyshev collocation
method in radial and vertical directions. See Section 3.4, Chapter 4 or reference [77] for more
numerical details.

1.4. Problems Setups

We study two thermal convection problems: the first one is a 2D rectangular domain with
infinite Prandtl number and viscosity strongly dependent on temperature, while the second, is
a Rayleigh-Bénard convection problem in a 3D circular rotating cylinder with finite but large
Prandtl and weak dependence of viscosity on temperature.

1.4.1. Convection with viscosity strongly dependent on temperature (2D)

First we consider a two-dimensional fluid layer of depth d (z coordinate) placed between two
parallel plates of length L. The bottom plate is at temperature T1 and the upper plate is at T0,
where T0 = T1−∆T and ∆T is the vertical temperature difference, which is positive. See Figure
1.3.

x

z

d

T=T1
u=0

T=T0
z ux=uz=0

L

Figure 1.3. Problem setup. A 2D container of length L and depth d with periodic
lateral boundary conditions. The bottom plate (dashed line) is rigid and is at
temperature T1; the upper plate (thick line) is free slip and is at temperature T0

(T0 < T1).

In the equations governing the system, u = (ux, uz) is the velocity field , T is the temperature,
P is the pressure, x and z are the spatial coordinates and t is the time, respectively. Equations
are simplified by taking into account the Boussinesq approximation, in which the density ρ is
considered constant everywhere except in the external forcing term, and where a dependence
on temperature is assumed as follows ρ = ρ0(1 − α(T − T0)). Here α is the thermal expansion
coefficient and ρ0 is the mean density at temperature T1.

The magnitudes are expressed in dimensionless form after rescaling as follows: (x′, z′) =
(x, z)/d, t′ = κt/d2, u′ = du/κ, P ′ = d2P/(ρ0κν0) , θ′ = (T − T0)/(∆T ). Here, κ is the thermal
diffusivity and ν0 is the viscosity at temperature T0. After rescaling the domain, Ω1 = [0, L)×[0, d]
is transformed into Ω2 = [0,Γ) × [0, 1], where Γ = L/d is the aspect ratio. The system evolves
according to the momentum and the mass balance equations, as well as to the energy conservation
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principle. The non-dimensional equations are:

∇ · u = 0, (1.1)

1

Pr
(∂tu + u · ∇u) = Raθ~e3 −∇P + div

(
ν(θ)

ν0
(∇u + (∇u)T )

)
, (1.2)

∂tθ + u · ∇θ = ∆θ. (1.3)

Here ~e3 represents the unitary vector in the vertical direction, Ra = d3αg∆T/(ν0κ) is the Rayleigh
number, g is the gravity acceleration and Pr = ν0/κ is the Prandtl number, respectively. Typically
for rocks Pr , is very large, since they present low thermal diffusivity (approximately 10−6m2/s)
and large viscosity (of the order 1020Ns/m2) [30]. For this reason, Pr can be considered as infi-
nite and the left hand side term in (1.2) can be made equal to zero. This transforms the problem
into a differential algebraic equation (DAE), which is very stiff. The viscosity ν(θ) is a smooth
positive bounded function of θ. With these assumptions, the problem under study is a well-posed
problem [50, 112] and thus there is a good chance of solving the time evolution problem with a
stable algorithm.

Our setting is a 2D domain with periodic boundary conditions along the horizontal coordinate.
We consider that the bottom plate is rigid and the upper surface is non-deformable and free slip.
The dimensionless boundary conditions are expressed as,

θ = 1, u = ~0, on z = 0 and θ = ∂zux = uz = 0, on z = 1. (1.4)

Jointly with equations (1.1)-(1.3), lateral boundary conditions are invariant under translations
along the x-coordinate, which introduces the symmetry SO(2) into the problem. In convection
problems with constant viscosity, the reflexion symmetry x → −x is also present insofar as the
fields are conveniently transformed as follows (θ, ux, uz, P ) → (θ,−ux, uz, P ). In this case, the
O(2) group expresses the full problem symmetry. The new terms introduced by the temperature
dependent viscosity in (1.2) maintain the reflexion symmetry, and thus the full symmetry group
is O(2).

In this work, we use several temperature viscosity laws for different purposes as, detailed
below:

Exponential law, according to previous results by [90]

ν(θ)

ν0
= exp(−µRaθ) (1.5)

where µ is the exponential rate and ν0 is the maximum viscosity in the fluid layer. If µ = 0,
dependence on (1.5) reduces to that of constant viscosity. For the temperature-dependent
viscosity case we consider µ = 0.0862. This law is used in Section 3.1 for testing and verifying
the spectral numerical approach, as typically spectral methods are not used in this context.

Exponential law proposed by Torrance and Turcotte [105],

ν(θ)

ν0
= exp[c(1/2− θ)] (1.6)

where c = ln(νmax/νmin). This law is only used for benchmark purposes in Section 3.1.
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“Smooth” arctangent law:

ν(θ)

ν0
=C1 arctan(β(Raθµ− b)) + C2 (1.7)

C1 =
(1− a)

arctan(−βb)− arctan(β(2500− b))
C2 =1− C1 arctan(−bβ)

The arc-tangent law models a transition in the viscosity within a narrow temperature gap
which is controlled by β. The parameter β controls how abrupt the viscosity transition
with temperature is and is kept as 0.9. The temperature at which the transition occurs
is controlled by b, the parameter related to the Rayleigh transition Rat which is described
and used in the following law of viscosity, and a is related to the inverse of the maximum
viscosity contrast. The parameter µ, related to physical constants in the system, is fixed to
µ = 0.0146.

Figure 1.4 shows a representation of the law (1.7) for several parameter values. Figure
1.4(a) shows the dependence on the Ra number. At low Ra, the viscosity is almost uniform
across the fluid layer, and it is only beyond Ra = 1000 that the sharp change in the viscosity
is perceived. In Figure 1.4(b), dependance on the b number may be observed. For b as small
as 1, the transition occurs close to θ = 1 and most of the fluid layer has low viscosity, while
if b is very large at this Ra number most of the fluid has constant viscosity ν0. The critical
Ra number is approximately Rac ∼ 1100, thus if b is large, the viscosity near the critical
Rayleigh number is almost constant across the fluid layer. In this case, the phase transition
is noticed in the fluid at large Ra numbers, well above Ra = 1300, in a convection state
in which vigorous plumes are already formed. Finally, Figure 1.4(c) shows the influence of
different viscosity contrasts.BIFURCATIONS AND DYNAMICS IN CONVECTION WITH . . . PHYSICAL REVIEW E 88, 043005 (2013)
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FIG. 2. Representation of the arctangent viscosity law vs the dimensionless temperature for different parameters values; (a) b = 10, a = 0.1,
and different Ra values; (b) a = 0.1, Ra = 1300, and different b values; (c) b = 10, Ra = 1300, and different a values.

For the boundary conditions, we consider that the bottom
plate is rigid and that the upper surface is nondeformable
and free slip. The dimensionless boundary conditions are
expressed as

θ = 1, u = �0 on z = 0 and θ = ∂zux = uz = 0 on z = 1.

(4)

Lateral boundary conditions are periodic. Jointly with
Eqs. (1)–(3), these conditions are invariant under translations
along the x coordinate, which introduces the symmetry SO(2)
into the problem. In convection problemswith constant viscos-
ity, reflection symmetry x → −x is also present insofar as the
fields are conveniently transformed as follows: (θ,ux,uz,p) →
(θ, − ux,uz,p). In this case, the O(2) group expresses the full
symmetry of the problem. The new terms introduced by the
temperature-dependent viscosity in the current setup equation
(2) maintain the reflection symmetry, and the symmetry group
is O(2).

III. THE VISCOSITY LAW

We consider that the viscosity depends on temperature and
that it changes more or less abruptly at a certain temperature
interval centered at a temperature of transition. This is
expressed with an arctangent law, which reads as follows:

ν(T ) = A1 arctan{β[(T − T1)− b]} + A2. (5)

The parameter β controls how abrupt the transition of
the viscosity with temperature is. Very high β values imply
that the viscosity transition occurs within a very narrow
temperature gap, while a finite and not too large β value
indicates that the phase change happens over a mushy region
of finite thickness [30]. For the results reported in this article,
we have fixed β = 0.9. As β is fixed, the viscosity transition
always occurs in a temperature interval with constant thickness
�θ ∼ 0.23. The temperature at which the transition occurs is
controlled by b. The constants A1 and A2 are adjusted by
imposing that at the reference temperature T1 the viscosity
law (5) must be ν0. On the other hand, in the limit T � T1, for
instance T − T1 = 2500, the viscosity is fixed to a fraction a

of the viscosity ν0. These conditions supply the system

ν0 = A1 arctan(−βb)+ A2,

ν0a = A1 arctan[β(2500− b)]+ A2,

which has the solution

A1 = ν0(1− a)

arctan(−βb)− arctan[β(2500− b)]
,

A2 = ν0 − A1 arctan(−bβ).

In dimensionless form, the viscosity law becomes

ν(θ )

ν0
= C1 arctan[β(Raθμ − b)]+ C2, (6)

where C1 = A1/ν0 and C2 = A2/ν0. In this expression, Ra is
the Rayleigh number and θ is the dimensionless temperature,
which takes values between 0 at the upper surface and 1 at
the bottom. The parameter μ, defined as μ = ν0κ/(d3αg), is
in this study fixed to μ = 0.0146. The parameter a is related
to the inverse of the maximum viscosity contrast on the fluid
layer, although the viscosity ν0a may not correspond to any
element of the fluid layer. For instance, Fig. 2(a) shows the
viscosity variation with temperature for different Rayleigh
numbers at a = 0.1 and b = 10. It is observed that, at low
Ra, Ra = 600, the viscosity is almost uniform in the fluid
layer, and it is only beyond Ra = 1000 that the sharp change
in the viscosity is perceived. Figure 2(b) shows the effect of
varying b at Ra = 1300 and a = 0.1. If b is as small as 1,
the transition occurs close to θ = 1 and most of the layer
has low viscosity, while if b is very large at this Ra number
most of the fluid has constant viscosity ν0. It is interesting to
relate the viscosity law as represented in these figures with the
linear stability analysis of a fluid layer with constant viscosity
ν0, as presented in Fig. 3. In this figure, one may observe
that the critical value of Ra is approximately Rac ∼ 1100.
On the other hand, in Fig. 2(b) one may observe that if b is
large, the viscosity near the critical Rayleigh number is almost
constant across the fluid layer. In this case, the phase transition
is noticed in the fluid at large Ra, well above Ra = 1300, in a
convection state in which vigorous plumes are already formed,
as may be deduced from Fig. 2(a). Figure 3(a) confirms that
at this limit the instability threshold of the conductive state
remains unchanged with respect to that obtained with constant
viscosity. On the other hand, if b is small, changes in the

043005-3

Figure 1.4. Representation of the arctangent viscosity law versus the dimensionless
temperature for different parameters values; a) b = 10, a = 0.1 and different Ra
values; b) a = 0.1, Ra = 1300 and different b values; c) b = 10, Ra = 1300 and
different a values.

“Sharp” arctangent law:

ν(θ)

ν0
= −

(
1− a
π

)
arctan(βµ(Raθ − Rat)) +

(
1 + a

2

)
(1.8)

This arctangent law models a transition in the viscosity which is controlled by β. The
transition is now much sharper than before because β is fixed to 100. The constant µ is



16 Chapter 1. Introduction16 Chapter 1. Introduction16 Chapter 1. Introduction

also fixed to µ = 0.0146 and the temperature at which the transition occurs is adjusted by
the transition Rayleigh Rat. This law is used in Section 3.3.

Figure 1.5 shows how the viscosity varies with temperature for several of the considered laws
in the parameter ranges used in this study. The variability in viscosity introduces strong couplings
between the momentum and heat equations, as well as introducing important nonlinearities into
the whole problem. For the arctangent dependence of viscosity with temperature according
to (1.7) or (1.8), we observe a fluid in which the viscosity changes abruptly in a temperature
interval around a temperature of transition. This defines a phase change over a mushy region,
which expresses the melting of minerals or other components.
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Figure 1.5. Representation of different viscosity law versus the dimensionless tem-
perature. The solid black line corresponds to exponencial law (1.5) with µ = 0.0862
and Ra = 78 used in Section 3.1; while the solid gray line corresponds to arctangent
law (1.7) with µ = 0.0146, Ra = 1300, b = 10 and a = 0.01 used in the Section
3.2, and the dashed line corresponds to the arctangent law (1.8) with µ = 0.0146,
Ra = 148, β = 100,Rat = 10 and a = 0.001.

The simplest stationary solution to the problem described by equations (1.1)-(1.3) with bound-
ary conditions (1.4), is the conductive solution which satisfies uc = 0 and θc = −z + 1. This
solution is stable only for a range of vertical temperature gradients which are represented by small
enough Rayleigh numbers. Beyond the critical threshold Rac, a convective motion settles in and
new structures are observed which may be either time-dependent or stationary. The stationary
equations in the latter case, obtained by canceling the time derivatives in the system (1.1)-(1.3),
are satisfied by the bifurcating solutions. As in the conductive solution the new solutions depend
on the external physical parameters, and new critical thresholds exist at which they lose their sta-
bility, thereby giving rise to new bifurcated structures. Conditions exist in which time-dependent
regimes are found in the neighborhood of branches which are unstable, as for instance after a
Hopf bifurcation. In these cases, the time-dependent numerical simulations are performed with
initial data in the unstable equilibrium solution, plus a small perturbation.

1.4.2. Confined rotating convection (3D)

Secondly, we study centrifugal effects in a convection problem with viscosity weakly depen-
dently on temperature at large Prandtl number. In particular we seek to gain insights into
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Figure 1.6. Variations of σ, Fr and ε for aqueous mixtures of glycerine at 22.4◦C.

convection processes that involve aqueous mixtures of glycerine, which are chosen because of
their use in many fluid mechanical settings [16], as well as in heat-transfer and chemical kinetics
applications. We consider a flow in a circular cylinder of radius r0 and depth d, rotating at a
constant rate ω rad/s. The governing equations are written in the rotating frame of reference
using the Boussinesq approximation, in which all fluid properties are considered constant, except
for the density in the gravitational and centrifugal buoyancy terms. The governing equations are
non-dimensionalized in a slightly differently way than before. We use d as the length scale, d2/κ
as the time scale, ν2

0ρ0/d
2 as the pressure scale (where ρ0 is now the density at temperature T0 and

ν0 is the kinematic viscosity at temperature T0) and ∆T as the temperature scale, respectively.
They are explicitly expressed as:

(∂t + u · ∇)u = −∇p+ σRaT ẑ + 2σΩu× ẑ − σFrRa

Γ
Tr + σ∇ ·

[
ν

ν0
(∇u + (∇u)T )

]
,

(∂t + u · ∇)T = ∇2T, ∇ · u = 0. (1.9)

Here, T is the non-dimensional temperature with origin at T0 (T = (Tphys − T0)/∆T ), u is the
velocity field in the rotating frame, (u, v, w) are the components of u in cylindrical coordinates
(r, θ, z), p is the kinematic pressure (including gravitational and centrifugal contributions), ẑ the
unit vector in the vertical direction z, and r is the radial vector in cylindrical coordinates. The
top and bottom endwalls are maintained at constant temperatures T0 − 0.5∆T and T0 + 0.5∆T ,
respectively, where T0 is the reference temperature and ∆T is the temperature difference between
the endwalls. The non-dimensional parameters are:

Rayleigh number Ra = αgd3∆T/κν0,

Coriolis number Ω = ωd2/ν0,

Froude number Fr = ω2r0/g,

Prandtl number σ = ν0/κ,

aspect ratio Γ = r0/d.

(1.10)

In order to keep the Coriolis number fixed (it depends on the viscosity) whilst increasing the
Prandtl number, the rotation rate of the cylinder ω must increase, and thus the Froude number Fr
also increases. For large Prandtl numbers the Froude number becomes large enough to strongly
influence the dynamics.
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The boundary conditions for u and T are:

r = Γ : u = v = w = 0, T = 0,

z = ±1/2 : u = v = w = 0, T = ∓1/2. (1.11)

In order to gain insights into convection processes involving mixtures of glycerine, it is de-
sirable to perform numerical simulations that involve large Pr numbers. In particular, in our
simulations we use physical parameters that correspond to aqueous mixtures of glycerine with
mass concentration in the range of 60–90% glycerine. In this range of concentrations i.e. glycerine
concentration above 60%, the Froude number (Fr = ω2r0/g ) is greater than 0.01, and the effects
of this parameter, and thus centrifugal effects, are significant.

(a) r-section of temperature

(b) r-section of vz

(c) θ-section of temperature (d) θ-section of vz

(e) z-section of temperature (f) z-section of vz

Figure 1.7. Different sections of temperature and vertical velocity for the equilib-
rium wall-mode state at Ω = 625, Γ = 4, σ = 7, Ra = 9× 104 and Fr = 0.

We study temperature-dependent viscosity effects by assuming that the viscosity depends
linearly on temperature. Cheng [17] provides a formula that approximates the dependence of
viscosity with temperature for the glycerine-water mixtures. Since in our setting the temperature
range is small, we assume that the viscosity depends linearly on temperature, given by the tangent
to the curve reported by [17] at the reference temperature T0. In dimensionless form, it is given
by

ν(T ) = ν0(1− γT ), (1.12)
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where γ is a linear rate given by

γ = ε∆T, ε = −
ν ′Cheng(T0)

ν0
. (1.13)

Figure 1.6 shows the variations of σ, Fr and ε for aqueous mixtures of glycerine at 22.4◦C. The
density and dynamic viscosity of the aqueous glycerine mixtures, required to calculate σ and Fr ,
are obtained from [46], and ε is determined from (1.13). For the range of glycerine concentrations
considered, the Prandtl number increases by about one order of magnitude, while the Froude
number increases by almost two orders of magnitude.

After setting γ equal to the values that correspond to the various glycerine concentrations
considered, we find that the effects of temperature-dependent viscosity are negligible , as reported
in the Section 4.2.2 and computationally quite expensive to incorporate. For this reason, we keep
the viscosity constant in the results reported in the main body of Section 3.4. Thus the problem
studied is the following:

(∂t + u · ∇)u = −∇p+ σRaT ẑ + 2σΩu× ẑ − σFrRa

Γ
Tr + σ∇2u,

(∂t + u · ∇)T = ∇2T, ∇ · u = 0, (1.14)

In this section, analysis of the solutions is explored solely from the perspective of their time
evolution, and then the initial data is described. The wall-modes regime are pairs of hot and
cold thermal plumes that ascend and descend in the cylinder sidewall boundary layer, forming an
essentially one-dimensional pattern characterized by the number of hot/cold plume pairs. Thus,
the initial condition is a wall-mode solution with wavenumber m = 20, i.e., twenty pairs of hot
and cold thermal plumes ascending and descending in the cylinder sidewall boundary layer. This
condition is a stable solution obtained according to [93], with parameters Ω = 625, Γ = 4, σ = 7,
Ra = 9 × 104 and Fr = 0 and mode m = 20. The different sections of temperature and vertical
velocity for this initial data can be seen in Figure 1.7. In the present study, the aspect ratio Γ = 4
and Coriolis number Ω = 625 are fixed to correspond to those in previous studies [69, 70], and
we consider variations in σ,Ra and Fr . The results corresponding to this setting are presented
in Section 3.4.





CHAPTER 2

Objectives

The objective of this work is to explore numerically the solutions of several convection prob-
lems in diverse contexts of interest in geophysics. We conduct the study by combining bifurcation
analysis and time-evolution simulations.

The breakdown of work into specific objectives is as follows:

1. Development of spectral numerical methods to solve the time dependent
regime in a convection problem with viscosity strongly dependent on temper-
ature at infinite Prandtl number.

Prior to exploring new numerical approaches, existing numerical methods of classical con-
vection problems are implemented, and we have verified that they can not be used to solve
the time-evolution problem of our interest in which viscosity strongly depends on temperature
and the Prandtl number is infinite (see Section 3.1, “Other semi-implicit scheme” and “Results”).

We propose spectral numerical methods based on a primitive variable formulation which over-
come the shortcomings of existing techniques and succeed in solving the time evolution problem
(Section 3.1, “Numerical schemes for time dependent solutions”).

2. Numerical analysis of the solutions of a convection problem in which the
viscosity strongly depends on temperature in the presence of the O(2) symme-
try.

Our purpose is to describe the variety of stationary solutions depending on the viscosity
laws under consideration, thereby exploring transitions from stationary regimes towards time-
dependent regimes and analyzing the impact of the symmetry on the time-dependent regimes.
We arrange these goals in the following steps:

Linear Stability Analysis: The primary instability thresholds of the conductive solution are
calculated with different viscosity laws: Exponential law (Section 3.1, “The conductive solu-
tion”), “smooth” arctangent law (Section 3.2, “The viscosity law ”) and “sharp” arctangent
law (Section 3.3, “Stationary solutions and their stability ”).

Bifurcations Diagrams: Bifurcation diagrams as a function of the Rayleigh number, Ra, for
different viscosity laws are obtained. (Section 3.1, “Stationary solutions and their stability”
for the exponential law, Section 3.2, “Bifurcation diagrams and time-dependent solutions”
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for the “smooth” arctangent law and Section 3.3, “Results and discussion” for the “sharp”
arctangent law).

Morphology of the plumes: The influence on the morphology of the plumes of several vis-
cosity laws and a range of parameters is explored in Section 3.1, “Time dependent and
transitory regimes”, Section 3.2, “Results” and Section 3.3, “Results and discussion”.

Transitions to time-dependent regimes: Several time-dependent regimes are described, am-
ong which solutions that are fundamentally related to the presence of the O(2) symmetry
are recognized. Of particular interest are those in which plate-like convection emerges.
(Section 3.2, “Bifurcation diagrams and time-dependent solutions”, Section 3.3, “Results
and discussion”).

3. Numerical analysis of the time evolution of a convection problem in which
the viscosity weakly depends on temperature in the presence of rotation and
considering centrifugal effects.

Our principal objective here is to investigate the centrifugal effects in a rotating convection
problem at large Prandtl number and viscosity weakly dependent on temperature. The numer-
ical approach solves the time-evolution with spectral second-order time-splitting method. The
Coriolis force is relatively large and the onset of thermal convection is in the so-called wall modes
regime (see Section 3.4, “Results”).

We explore the impact on the solutions of the viscosity dependence on temperature and of
the Prandtl number, and we find that these effects are small when compared with the centrifugal
ones (Section 3.4, “Results” and “Appendix A: Temperature-dependent viscosity”).



CHAPTER 3

Results

The results obtained are presented by compendium of articles. I have written four papers
which have already been published in journals.

The first one, entitled “Spectral numerical schemes for time-dependent convection with vis-
cosity dependent on temperature” is co-authored by my advisor A.M. Mancho and is published
in Communications in Nonlinear Science and Numerical Simulation 19 (4) 538-553 (2014). In
this article, spectral numerical methods based on a primitive variable formulation are proposed
to solve the time evolution of a convection problem in a 2D domain with viscosity strongly de-
pending on temperature at infinite Prandtl number. We examine the scope of our techniques by
exploring transitions from stationary regimes towards time-dependent regimes. We also compare
the output and performance of these methods with other schemes.

The second article, entitled “Bifurcations and dynamics of a convection problem with tem-
perature dependent viscosity under the presence of the O(2) symmetry”, is co-authored by A.
M. Mancho and is published in Physical Review E 88, 043005 (2013). In this paper, with the
same setup as in the first, we study the influence on the morphology of the plumes of a particular
viscosity law in a range of parameter values, and explore the impact of symmetry on the time
evolution of the solutions. We report that at a large aspect ratio and high Rayleigh numbers,
travelling waves, heteroclinic connections and chaotic regimes are found. These solutions are
greatly influenced by the presence of the symmetry and have not previously been described in
the context of temperature dependent viscosities.

The third paper, entitled “Symmetry and plate-like convection in fluids with temperature-
dependent viscosity” is also co-authored by A. M. Mancho and is published in Physics of Fluids
26, 016602 (2014). This article has been featured as one of the Editor’s Picks at the main journal
web page. This selection highlights the best articles published in the journal during the year
according to the editor judgement. This paper considers the same setup as in the first two arti-
cles and addresses a viscosity dependence on temperature that models a very viscous (and thus
rather rigid) lithosphere over a convecting mantle. Here we find solutions such as limit cycles that
are fundamentally related to the presence of symmetry. Spontaneous plate-like behaviors that
rapidly evolve towards a stagnant lid regime emerge sporadically through abrupt bursts during
these cycles. The plate-like evolution alternates motions towards either right or left, thereby
introducing temporary asymmetries on the convecting styles.
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The fourth paper is coauthored by J. M. Lopez, A.M. Mancho and F. Marques. Its title is
“Confined rotating convection with large Prandtl number: Centrifugal effects on wall modes” and
is published in Physical Review E 89, 013019 (2014). Therein, for a thermal convection problem
in a 3D rotating cylinder, and in order to investigate the centrifugal buoyancy effects, we use the
physical parameters corresponding to an aqueous mixture of glycerine, with mass concentration
in the range of 60-90%. Our findings are that the centrifugal buoyancy term has a significant
impact on the structure and dynamics of the sidewall boundary layer as well as on the bulk
convection. The effects of the Froude number cannot be ignored for rotating convection at large
Prandtl numbers.
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3.1. Spectral numerical schemes for time-dependent convection
with viscosity dependent on temperature

Coauthors: Ana M. Mancho

Abstract: This article proposes spectral numerical methods to solve the time evolution of
convection problems with viscosity strongly dependent on temperature at infinite Prandtl num-
ber. Although we verify the proposed techniques solely for viscosities that depend exponentially
on temperature, the methods are extensible to other dependence laws. The setup is a 2D domain
with periodic boundary conditions along the horizontal coordinate which introduces a symme-
try in the problem. This is the O(2) symmetry, which is particularly well described by spectral
methods and motivates the use of these methods in this context. We examine the scope of our
techniques by exploring transitions from stationary regimes towards time dependent regimes.
At a given aspect ratio, stable stationary solutions become unstable through a Hopf bifurcation,
after which the time-dependent regime is solved by the spectral techniques proposed in this article.

Reference: [26] J. Curbelo, A. M. Mancho. Spectral numerical schemes for time-dependent
convection with viscosity dependent on temperature. Communications in Nonlinear Science and
Numerical Simulation, 19 (2014) 3, 538-553

http://www.sciencedirect.com/science/article/pii/S1007570413001494
http://www.sciencedirect.com/science/article/pii/S1007570413001494




Spectral numerical schemes for time-dependent convection
with viscosity dependent on temperature

J. Curbelo a,b, A.M. Mancho a,⇑
a Instituto de Ciencias Matemáticas (CSIC-UAM-UCM-UC3M), Nicolás Cabrera, 13-15, Campus Cantoblanco UAM, 28049 Madrid, Spain
b Departamento de Matemáticas de la Universidad Autónoma de Madrid, Facultad de Ciencias, Módulo 17, 28049 Madrid, Spain

a r t i c l e i n f o

Article history:
Received 20 November 2012
Received in revised form 1 April 2013
Accepted 2 April 2013
Available online 17 April 2013

Keywords:
Spectral semi-implicit method
Numerical analysis
Convection with viscosity dependent on
temperature
Infinite Prandtl number

a b s t r a c t

This article proposes spectral numerical methods to solve the time evolution of convection
problems with viscosity strongly dependent on temperature at infinite Prandtl number.
Although we verify the proposed techniques solely for viscosities that depend exponen-
tially on temperature, the methods are extensible to other dependence laws. The set-up
is a 2D domain with periodic boundary conditions along the horizontal coordinate which
introduces a symmetry in the problem. This is the O(2) symmetry, which is particularly
well described by spectral methods and motivates the use of these methods in this context.
We examine the scope of our techniques by exploring transitions from stationary regimes
towards time dependent regimes. At a given aspect ratio, stable stationary solutions
become unstable through a Hopf bifurcation, after which the time-dependent regime is
solved by the spectral techniques proposed in this article.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Thermal convection in fluids in which viscosity depends on temperature plays an important role in many geophysical and
technical processes. This problem is addressed in the literature by considering diverse laws. For instance, an Arrhenius-type
viscosity law is a common approach to describing upper mantle convection problems [1–4]. Other studies such as [3, 5–8]
consider fluids in which viscosity depends exponentially on temperature. In [6], an exponential law is chosen to fit the exper-
imental data for the temperature dependence of viscosity in glycerol. In [3], the exponential dependence is discussed as an
approach to the Arrhenius law by means of a Taylor series around a reference temperature. This is also called the Frank–
Kamenetskii approximation (see [9]). In [8], extremely large viscosity variations such as those expected in the mantle are
investigated by means of an exponential law. More recently, [10,11] have considered the hyperbolic tangent or the arctan-
gent as viscosity laws since they model a viscosity transition in a narrow temperature gap. Further studies have treated other
weaker dependencies such as linear [12,13] or quadratic ones [14,15].

From the mathematical point of view it has recently been proven that convection problems in which viscosity is a func-
tion of temperature is a well posed problem [16,17] for dependences which are smooth bounded positive analytical func-
tions, so it stands a good chance of solution on a computer using a stable algorithm. The variability in viscosity
introduces strong couplings between the momentum and heat equations, as well as introducing important nonlinearities
into the whole problem. On the other hand, it is of particular interest for mantle convection problems, to consider the fact
that the Prandtl number, which is the quotient of viscosity and thermal diffusivity, is virtually infinite. This limit transforms
the set of equations describing the time-dependent problem into a differential algebraic problem (DAE), which is very stiff.

1007-5704/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cnsns.2013.04.005

⇑ Corresponding author. Tel.: +34 912999762.
E-mail addresses: jezabel.curbelo@icmat.es (J. Curbelo), a.m.mancho@icmat.es (A.M. Mancho).

Commun Nonlinear Sci Numer Simulat 19 (2014) 538–553

Contents lists available at ScienceDirect

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier .com/locate /cnsns

3.1. Spectral numerical schemes for time-dependent convection 273.1. Spectral numerical schemes for time-dependent convection 273.1. Spectral numerical schemes for time-dependent convection 27





Spectral numerical schemes for time-dependent convection with

viscosity dependent on temperature.

J. Curbelo, A.M. Mancho

Abstract

This article proposes spectral numerical methods to solve the time evolution of convection problems with
viscosity strongly depending on temperature at infinite Prandtl number. Although we verify the proposed
techniques just for viscosities that depend exponentially on temperature, the methods are extensible to other
dependence laws. The set-up is a 2D domain with periodic boundary conditions along the horizontal coordinate.
This introduces a symmetry in the problem, the O(2) symmetry, which is particularly well described by spectral
methods and motivates the use of these methods in this context. We examine the scope of our techniques by
exploring transitions from stationary regimes towards time dependent regimes. At a given aspect ratio stable
stationary solutions become unstable through a Hopf bifurcation, after which the time-dependent regime is
solved by the spectral techniques proposed in this article.

1 Introduction

Thermal convection in fluids in which viscosity depends on temperature plays an important role in many geophysical
and technical processes. This problem has been addressed in the literature by considering diverse laws. For instance
an Arrhenius-type viscosity law is a usual approach to describe upper mantle convection problems [1, 2, 3, 4]. Other
studies such as [5, 6, 7, 3, 8] have considered fluids in which viscosity depends exponentially on temperature. In [6]
an exponential law is chosen to fit the experimental data for the temperature dependence of viscosity in glycerol.
In [3] it is discussed the exponential dependence as an approach to the Arrhenius law by means of a Taylor series
around a reference temperature, also called the Frank-Kamenetskii approximation (see [9]). In [8] extremely large
viscosity variations as those expected in the mantle are investigated by means of an exponential law. More recently
[10, 11] have considered the hyperbolic tangent or the arctangent as viscosity laws for they model a viscosity
transition in a narrow temperature gap. Other studies have treated other weaker dependencies such as linear
[12, 13] or quadratic ones [14, 15].

From the mathematical point of view it has recently been proven that convection problems in which viscosity
is a function of temperature is a well posed problem [16, 17] for dependences which are smooth bounded positive
analytical functions, so it stands a good chance of solution on a computer using a stable algorithm. The variability in
viscosity introduces strong couplings between the momentum and heat equations, as well as introducing important
nonlinearities into the whole problem. On the other hand, it is of major interest, in particular for mantle convection
problems, to consider the fact that the Prandtl number, which is the quotient of viscosity and thermal diffusivity,
is virtually infinite. This limit transforms the set of equations describing the time-dependent problem into a
differential algebraic problem (DAE), which is very stiff.

In this context, this article discusses the performance of several time evolution spectral schemes for convection
problems in which the viscosity depends on temperature and the Prandtl number is infinite. We focus the analysis
by choosing an exponential law similar to that discussed in [18]. We characterize time-dependent solutions
demonstrating the efficiency of the time-dependent scheme to describe the solutions beyond the stationary regime.
Our setting is a 2D domain with periodic boundary conditions along the horizontal coordinate. The equations
with periodic boundary conditions are invariant under horizontal translations, thus the problem has a symmetry
represented by the SO(2) group. Additionally, if the reflection symmetry exists, the full symmetry group is the
O(2) group. Symmetric systems typically exhibit more complicated behavior than non-symmetric systems and
there exist numerous novel dynamical phenomena whose existence is fundamentally related to the presence of
symmetry, such as traveling waves or stable heteroclinic cycles [19, 20, 21]. The numerical simulation of dynamics
under the presence of symmetry has been usually addressed by spectral techniques [21, 22]. In the context of
convection problems with constant viscosity in cylindrical containers that posses the O(2) symmetry, the existence
of heteroclinic cycles have been reported both experimentally [23] and numerically with a fully spectral approach
[24]. However Assemat and co-authors [25] who have used high order finite element methods to solve a similar
set-up notice the absence of the heteroclinic cycles in their simulations. Additionally they notice the influence of
the computational grid on the breaking of the O(2) symmetry, by producing pinning effects on the solution. These
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reasons suggest that spectral methods might be particularly suitable to deal with problems with symmetries as
some solutions might be overlooked with approaches based on other spatial discretizations.

Spectral methods are not very popular in the simulation of convection problems with temperature-dependent
viscosity [26], as they are reported to have limitations when handling lateral variations in viscosity. Alternatively,
preferred schemes exist in which the basis functions are local; for example, finite difference, finite element and finite
volume methods. For instance, the works by [27, 28] have treated this problem in a finite element discretization
in primitive variables, while in [29, 30] finite differences or finite elements are used in the stream-function vorticity
approach. Spectral methods have been successfully applied to model mantle convection with moderate viscosity
variations in, for instance, [31, 32]. These works do not use the primitive variables formulation, and deal with
the variations in viscosity by decomposing it into a mean (horizontally averaged) part and a fluctuating (laterally
varying) part. Our approach addresses the variable viscosity problem by proposing a spectral approximation in
primitive variables without any decomposition on the viscosity. The main novelty in this paper is the extension
of the spectral methodology discussed in [18], valid only for stationary problems, for solving the time-dependent
problem, and the extension of the results to describe time-dependent solutions.

As regards temporal discretization, backward differentiation formulas (BDF’s) are widely used in convection
problems. This is the case of the work discussed in [33], which following ideas proposed in [34] uses a fixed time
step second-order-accurate which combines Adams-Bashforth and BDF schemes. A recent article by Garćıa and
co-authors [35] compares the performance of several semi-implicit and implicit time integrations methods based on
BDF and extrapolation formulas. The physical set-ups discussed in these papers are for convection problems with
constant viscosity and finite Prandtl number. In contrast, this article focuses on convection problems with viscosity
strongly dependent on temperature and infinite Prandtl number that lead to a differential algebraic problem. We
will see that the semi-implicit methods discussed in [34, 33] do not work in this context. BDFs and implicit methods
are known to be an appropriate choice [36, 37] for efficiently tackling very stiff problems. According to [36, 35],
for the time discretization scheme we propose several high order backward differentiation formulas which are ready
for an automatic stepsize adjustment. Furthermore, we solve the fully implicit problem and also propose a semi-
implicit approach. The output and performance of this option are compared with those of the implicit scheme. It
is found that the semi-implicit approach presents some advantages in terms of computational performance.

The article is organized as follows: In Section 2, we formulate the problem, providing a description of the physical
set-up, the basic equations and the boundary conditions. Section 3 describes a spectral scheme for stationary
solutions which will be useful for benchmarking the time dependent numerical schemes. First the conductive
solution and its stability is determined. Other stationary solutions appear above the instability threshold, which
are computed by means of a Newton-Raphson method using a collocation method. The stability of the stationary
solutions is predicted by means of a linear stability analysis and is also solved with the spectral technique. Section
4 discusses several time-dependent schemes, which include implicit and semi-implicit schemes. Section 5 reports
the results at a fixed aspect ratio in a range of Rayleigh numbers. Stationary and time-dependent solutions are
found and different morphologies of the thermal plumes are described. Some computational advantages of some
schemes versus others are discussed. Finally, Section 6 presents the conclusions.

Figure 1: Problem set-up.

2 Formulation of the problem

The physical set-up, shown in Fig.1, consists of a two dimensional fluid layer of depth d (z coordinate) placed
between two parallel plates of length L. The bottom plate is at temperature T0 and the upper plate is at T1, where
T1 = T0 −∆T and ∆T is the vertical temperature difference, which is positive, i.e, T1 < T0.

In the equations governing the system, u = (ux, uz) is the velocity field, T is the temperature, P is the pressure,
x and z are the spatial coordinates and t is the time. Equations are simplified by taking into account the Boussinesq
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approximation, where the density ρ is considered constant everywhere except in the external forcing term, where a
dependence on temperature is assumed as follows ρ = ρ0(1−α(T−T1)). Here ρ0 is the mean density at temperature
T1 and α the thermal expansion coefficient.

We express the equations with magnitudes in dimensionless form after rescaling as follows: (x′, z′) = (x, z)/d,
t′ = κt/d2, u′ = du/κ, P ′ = d2P/(ρ0κν0) , θ′ = (T − T1)/(∆T ). Here κ is the thermal diffusivity and ν0
is the maximum viscosity of the fluid, which is the viscosity at temperature T1. After rescaling the domain,
Ω1 = [0, L)× [0, d] is transformed into Ω2 = [0,Γ)× [0, 1], where Γ = L/d is the aspect ratio. The system evolves
according to the momentum and the mass balance equations, as well as to the energy conservation principle. The
non-dimensional equations are (after dropping the primes in the fields):

∇ · u = 0, (1)

1

Pr
(∂tu + u · ∇u) = Rθ~e3 −∇P + div

(
ν(θ)

ν0
(∇u + (∇u)T )

)
, (2)

∂tθ + u · ∇θ = ∆θ. (3)

Here ~e3 represents the unitary vector in the vertical direction, R = d3αg∆T/(ν0κ) is the Rayleigh number, g is
the gravity acceleration and Pr = ν0/κ is the Prandtl number. We consider that the Pr is infinite, as is the case
in mantle convection problems, and thus the term on the left-hand side in (2) can be made equal to zero. This
transforms the problem into a differential algebraic equation (DAE), which is very stiff.

The viscosity ν(θ) is a smooth positive bounded function of θ. In order to test the performance of the proposed
schemes ν(θ) is chosen to be an exponential law following previous results by [18]. The dimensional form of this
law is as follows:

ν(T )

ν0
= exp(−γ(T − T1)) (4)

where γ is an exponential rate and ν0 is the largest viscosity at the upper surface. The dimensionless expression is:

ν(θ)

ν0
= exp(−µRθ) (5)

where µ = γν0κ/(d
3αg). The presence of the R number in the exponent of the viscosity law is uncommon among

the literature that considers this viscosity dependence. However it formulates better laboratory experiments in
which the increment of the R number is done by increasing the temperature at the bottom surface. This procedure
ties the viscosity to change with the Rayleigh number. Dependence on Eq. (5) reduces to that of constant viscosity
if µ = 0, while for temperature-dependent viscosity we consider µ = 0.0862. The viscosity contrast in equation (5)
for Rayleigh numbers up to R = 120 –as employed in this article– is 3.1 · 104.

Additionally for benchmark purposes in section 3.1 the exponential law proposed by [5] has been considered:

ν(θ)

ν0
= exp[c(

1

2
− θ)] (6)

where c = ln(νmax/νmin). In this law ν0 is the viscosity involved in the definition of the dimensionless R number
but it is not longer the maximum viscosity but the viscosity at θ = 1/2.

For boundary conditions, we consider that the bottom plate is rigid and that the upper surface is non deformable
and free slip. The dimensionless boundary conditions are expressed as,

θ = 1, u = ~0, on z = 0 and θ = ∂zux = uz = 0, on z = 1. (7)

Lateral boundary conditions are periodic. Jointly with equations (1)-(3), these conditions are invariant under
translations along the x-coordinate, which introduces the symmetry SO(2) into the problem. In convection problems
with constant viscosity, the reflexion symmetry x → −x is also present insofar as the fields are conveniently
transformed as follows (θ, ux, uz, p) → (θ,−ux, uz, p). In this case, the O(2) group expresses the full problem
symmetry. The new terms introduced by the temperature dependent viscosity, in the current set-up Eq. (2)
maintain the reflexion symmetry, and the symmetry group is O(2).

3 Numerical schemes for stationary solutions

The numerical codes proposed in this article for the time-dependent problem requiere a priori known solutions
for benchmark. In the set-up under consideration, both stationary and time-dependent solutions exist. Some of
the stationary solutions have simple analytical expressions which are known a priori, but there are others which
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are not so simple and must be found numerically. Stationary solutions are not stable in the full parameter space,
and after becoming unstable either other stationary solutions may become stable or a time-dependent regime is
observed. In order to verify our methods, the self-consistency of results provided by a different kind of analysis is
required. In this context, this section describes stationary solutions to the system (1)-(3) and their stability. This
description, together with the fact that the problem is well-posed [17], provide a required a priori knowledge that
will assist in the examination of the validity of different time-dependent numerical schemes.

3.1 The conductive solution

The simplest stationary solution to the problem described by equations (1)-(3) with boundary conditions (7) is
the conductive solution which satisfies uc = 0 and θc = −z + 1. This solution is stable only for a range of vertical
temperature gradients which are represented by small enough Rayleigh numbers. Beyond the critical threshold Rc,
a convective motion settles in and new structures are observed which may be either time dependent or stationary.
The stationary equations in the latter case, obtained by canceling the time derivatives in the system (1)-(3), are
satisfied by the bifurcating solutions. As in the conductive solution the new solutions depend on the external
physical parameters, and new critical thresholds exist at which they lose their stability, thereby giving rise to new
bifurcated structures.
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Figure 2: Critical curves according to the exponential law given in (6). a) Rm versus c; b) km versus c.

1 2 3 4 5 6 7 8 9

74

76

78

80

82

84

86

88

Γ

R

m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10

Figure 3: Critical instability curves R(m,Γ) for a fluid layer with temperature dependent viscosity µ = 0.0862
according to the exponential law given in (5).

In this section, we first describe the instability thresholds for the conductive solution. For this purpose small
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perturbations are added to it:

u(x, z, t) = 0 + ũ(z)eλt+ikx, (8)

θ(x, z, t) = −z + 1 + θ̃(z)eλt+ikx, (9)

P (x, z, t) = −Rz2/2 +Rz + C + P̃ (z)eλt+ikx. (10)

The sign in the real part of the eigenvalue λ determines the stability of the solution: if it is negative the perturbation
decays and the stationary solution is stable, while if it is positive the perturbation grows in time and the conductive
solution is unstable. If these expressions are introduced into the system (1)-(3), and both the nonlinear terms in
the perturbations and their tildas are dropped, the system becomes:

0 = ikux + ∂zuz,

0 = ikP −
[
∂zν(θc)

ν0
(ikuz + ∂zux) +

ν(θc)

ν0
(∂2zz − k2)ux

]
,

0 = ∂zP −
[
2
∂zν(θc)

ν0
∂zuz +

ν(θc)

ν0
(∂2zz − k2)uz

]
−Rθ,

λθ = (∂2zz − k2)θ + uz.

The boundary conditions for the perturbation fields are:

θ = 0, u = ~0, on z = 0 and θ = ∂zux = uz = 0, on z = 1. (11)

Stability analysis of the conductive solution for viscosity dependent on temperature is numerically addressed in
[6, 18, 38]. For the results reported in this section we follow the spectral scheme presented in [39]. Appropriate
expansions in Chebyshev polynomials of the unknown fields (u, θ, P ) along the vertical coordinate transform the
eigenvalue problem into its discrete form:

Aw = λBw,

where the expansion coefficients are stored in the vector w. This generalized eigenvalue problem supplies the
dispersion relation R = R(k) at the bifurcation point (Re(λ) = 0). R(k) is an upwards concave curve that reaches
a minimum at Rm, km. In an infinite domain. Rm and km are referred respectively as the critical Rayleigh number
and the critical wave number because above Rm the conductive solution losses its stability and a new pattern grows
with wave number km. For the viscosity law (6) Stengel and co-authors [6] have computed the values of Rm, km
as a function of the viscosity contrast c = ln(νmax/νmin) ranging from 0 to 14. For free slip conditions at the top
and rigid conditions at the bottom, their Figure 2 shows a curve that we reproduce with our spectral scheme also
in our Figure 2. The agreement among them is excellent and this provides a first benchmark for our calculations.

In finite domains the wavenumber k that appears in the dispersion relation cannot be arbitrary but must meet
the periodic boundary conditions, i. e.:

k Γ = 2πm, with m = 1, 2, 3 . . . (12)

Here, m is the number of wavelengths of the unstable structure growing in the finite domain. Restrictions to k
given by condition (12) are replaced in the dispersion relation R = R(k), thereby providing a critical curve for each
integer m as a function of the aspect ratio Γ, R = R(m,Γ). Figure 3 displays critical Rayleigh numbers Rc on the
vertical axis as a function of the aspect ratio Γ on the horizontal axis for the viscosity law (5), which is the one
we keep in the remaining analysis. The conductive solution is stable below the critical curves, which means that
in a box with a given aspect ratio, Γ, if R < Rc then initial conditions near to the conductive solution evolve in
time approaching it. Alternatively, if at that aspect ratio R > Rc, then initial conditions which are near to the
conductive solution evolve in time away from it, towards a different solution. This new solution may be stationary
or time-dependent. Figure 3 confirms that for increasing aspect ratios the most unstable spatial eigenfunction
increases its wavenumber m.

3.2 Numerical stationary solutions

There exist stationary solutions to the system (1)-(3) that bifurcate from the conductive solution above the insta-
bility thresholds displayed in Figure 3 and may be computed numerically. They are stationary because they satisfy
the stationary version of equations (1)-(3), which are obtained by canceling the partial derivatives with respect to
time. These solutions may be numerically obtained by using a variant of the iterative Newton-Raphson method,
similar to that in [18]. This method starts with an approximate solution at step s = 0, to which is added a small
correction in tilda:

(us + ũ, θs + θ̃, P s + P̃ ). (13)
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These expressions are introduced into the system (1)-(3), and after canceling the nonlinear terms in tilda, the
following equations are obtained:

0 =∇ · ũ +∇ · us, (14)

0 =− ∂xP̃ − ∂xP s +
1

ν0
[L11(θs, usx, u

s
z) + L12(θs)ũx

+ L13(θs)ũz + L14(θs, usx, u
s
z)θ̃], (15)

0 =− ∂zP̃ − ∂zP s +
1

ν0
[L21(θs, usx, u

s
z) + L22(θs)ũx

+ L23(θs)ũz + (L24(θs, usx, u
s
z) +R)θ̃], (16)

0 =ũ · ∇θs + us · ∇θ̃ + us · ∇θs −∆θ̃ −∆θs. (17)

Here, Lij (i = 1, 2, j = 1, 2, 3, 4) are linear operators with non constant coefficients which are defined as follows:

L11(θ, ux, uz) =2∂θν(θ)∂xθ∂xux + ν(θ)∆ux

+ ∂θν(θ)∂zθ(∂xuz + ∂zux), (18)

L12(θ) =2∂θν(θ)∂xθ∂x + ν(θ)∆ + ∂θν(θ)∂zθ∂x, (19)

L13(θ) =∂θν(θ)∂zθ∂x, (20)

L14(θ, ux, uz) =2∂θν(θ)∂xux∂x + 2∂2θθν(θ)∂xθ∂xux + ∂θν(θ)∆ux

+ (∂xuz + ∂zux)(∂θν(θ)∂z + ∂2θθν(θ)∂zθ), (21)

L21(θ, ux, uz) =2∂θν(θ)∂zθ∂zuz + ν(θ)∆uz

+ ∂θν(θ)∂xθ(∂zux + ∂xuz), (22)

L22(θ) =∂θν(θ)∂xθ∂z, (23)

L23(θ, ux, uz) =2∂θν(θ)∂zθ∂z + ν(θ)∆ + ∂θν(θ)∂xθ∂z, (24)

L24(θ, ux, uz) =2∂θν(θ)∂zuz∂z + 2∂θθν(θ)∂zθ∂zuz + ∂θν(θ)∆uz

+ (∂zux + ∂xuz)(∂θν(θ)∂x + ∂θθν(θ)∂xθ). (25)

In the above expressions spatial derivatives of the viscosity function ν(θ) are computed through the chain rule
as numerically this provides more accurate results. The unknown fields ũ, P̃ , θ̃ are found by solving the linear
system with the boundary conditions (11) and the new approximate solution s+ 1 is set to

us+1 = us + ũ, θs+1 = θs + θ̃, P s+1 = P s + P̃ .

The whole procedure is repeated for s+ 1 until a convergence criterion is fulfilled. In particular, we consider that
the l2 norm of the computed perturbation should be less than 10−9.

At each step, the resulting linear system is solved by expanding any unknown perturbation field Y, in Chebyshev
polynomials in the vertical direction and Fourier modes along the horizontal axis:

Y (x, z) =

dL/2e∑

l=1

M−1∑

m=0

aYlmTm(z)ei(l−1)x +
L∑

l=dL/2e+1

M−1∑

m=0

aYlmTm(z)ei(l−1−L)x. (26)

In this notation, d·e represents the nearest integer towards infinity. Here L and M are the number of nodes in
the horizontal and vertical directions, respectively. Chebyshev polynomials are defined in the interval [−1, 1] and
Fourier modes in the interval [0, 2π]. Therefore, for computational convenience, the domain Ω = [0,Γ) × [0, 1] is
transformed into [0, 2π)×[−1, 1]. This change in coordinates introduces scaling factors into equations and boundary
conditions which are not explicitly given here. There are 4 × L ×M unknown coefficients which are determined
by a collocation method in which equations (14)-(16) and boundary conditions are posed at the collocation points
(xj , zi),

Uniform grid: xj = (j − 1)
2π

L
, j = 1, . . . , L;

Gauss–Lobatto: zi = cos

((
i− 1

M − 1
− 1

)
π

)
, i = 1, . . . ,M ;

After replacing expression (26) in equations (14)-(16), the partial derivatives are evaluated on the basis of functions.
Derivatives of the Chebyshev polynomials at the collocation points are evaluated a priori according to the ideas
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reported in [40]. The expansion (26) is an interpolator outside the collocation points, which when restricted to
these points may be rewritten as:

Y (xj , zi) =

L∑

l=1

M−1∑

m=0

aYlmTm(zi)e
i(l−1)xj , (27)

due to the aliasing effect of the functions ei(l−1)xj and ei(l−1−L)xj for l > L/2 at the collocation points. However,
this expression is not valid for computing the spatial derivatives of the fields, for which purpose expansion (26)
should be used. Although in practice Eq. (26) is correct and provides good results, we do not employ it in this
work because it involves complex functions and complex unknowns aYlm, eventually leading to the inversion of
complex matrices which computationally are more costly than real matrices. On the other hand since the unknown
functions Y are real, they admit expansions with real functions and real unknowns. In order to obtain these
functions, we take into account Euler’s formula eilx = cos(lx) + i sin(lx), which is replaced in (26). We also note
that the coefficients are given by conjugated pairs in such a way that, for instance, aY2m = aY ∗Lm. Strictly speaking,
expansion (26) is a real function only if every coefficient in the first summatory for l ≥ 2 has a conjugate pair in
the second summatory. This implies that L must be an odd number; thus in what follows we restrict ourselves to
odd L values. With these considerations the following equations are obtained:

Y (x, z) =

dL/2e∑

l=1

M−1∑

m=0

bYlmTm(z) cos((l − 1)x)

+

dL/2e∑

l=2

M−1∑

m=0

cYlmTm(z) sin((l − 1)x). (28)

Some relations among the real and complex coefficients are: bY1m = aY1m and bYlm = 2<(aYlm) and cYlm = −2=(aYlm),
for l = 2, . . . , dL/2e.

The rules followed to obtain as many equations as unknowns are described next. Equations (14)–(17) are
evaluated at nodes i = 2, . . . ,M − 1, j = 1, . . . , L. This provides 4 × (M − 2) × L equations; the boundary
conditions (7) are evaluated at i = 1,M , j = 1, . . . , L. This supplies additional 4×L×M − 2L equations. In order
to obtain the remaining 2L equations, we complete the system with extra boundary conditions which eliminate
spurious modes for pressure [39, 41] projecting the equation of motion in the upper and lower plate of the domain
i.e. the equation (16) is evaluated at nodes i = 1,M , j = 1, . . . , L. This choice has been reported to be successful
for many convection problems [39, 42, 43]. However, in the present set-up, results are improved if, for the equation
(16) imposed at the upper boundary, the continuity equation is assumed and ∂2zzuz is replaced with −∂xzux. With
these rules we obtain a linear system of the form AX = b in which X contains the unknowns. However, the matrix
A is singular due to the fact that pressure with the imposed conditions is defined up to an additive constant.
According to[39, 42, 43], we fix the constant by removing equation (16) at node j = 1, i = 2 and adding at this
point the equation bP10 = 0. This is computationally cheaper than the pseudo-inverse method. However, in the
problem under study, dropping the equation (16) at one point introduces weakly oscillating structures on this side
of the pressure field. To overcome this drawback, in the final step of the iterative procedure, once the tolerance
is attained, we proceed alternatively by computing a pseudoinverse of the matrix A by using the singular value
decomposition (SVD). Let A = UΣV ∗ be the singular value decomposition of A; V Σ+U∗ is the pseudoinverse of
A, where Σ+ is the pseudoinverse of a diagonal matrix, i.e. it takes the reciprocal of each non-zero element on the
diagonal, and transposes the resulting matrix.

The study of the stability of the numerical stationary solutions under consideration is addressed by means of a
linear stability analysis. Now perturbations are added to a general stationary solution, labeled with superindex b:

u(x, z, t) = ub(x, z) + ũ(x, z)eλt, (29)

θ(x, z, t) = θb(x, z) + θ̃(x, z)eλt, (30)

P (x, z, t) = P b(x, z) + P̃ (x, z)eλt. (31)

The linearized equations are:

0 =∇ · ũ (32)

0 =− ∂xP̃ +
1

ν0
[L12(θb)ũx + L13(θb)ũz + L14(θb, ubx, u

b
z)θ̃] (33)

0 =− ∂zP̃ +
1

ν0
[L22(θb)ũx + L23(θb)ũz + (L24(θb, ubx, u

b
z) +R)θ̃] (34)

0 =ũ · ∇θb + ub · ∇θ̃ + ub · ∇θb −∆θ̃ + λθ̃, (35)
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where the operators Lij are the same as those defined in Eqs. (18)-(25). The stability of the stationary solutions is
approached with the collocation method used for the Newton-Raphson iterative method. Expansions of the fields
(28) are replaced in equations (32)-(35), and they and the boundary conditions (11) are evaluated at the collocation
nodes following the same rules as before. As a result, the discrete form of the generalized eigenvalue problem is
obtained:

Aw = λBw, (36)

where w is a vector containing unknowns.
In order to solve the generalized eigenvalue problem, we use a generalized Arnoldi method, which is described

in [44]. The numerical approach uses the idea of preconditioning the eigenvalue problem with a modified Caley
transformation, which transforms the problem (36) and which admits infinite eigenvalues into another one with all
its eigenvalues finite. Afterwards, the Arnoldi method is applied.

4 Numerical schemes for time dependent solutions

The governing equations (1)–(3), together with boundary conditions (7), define a time-dependent problem for which
we discuss temporal schemes based on a primitive variables formulation. The spatial discretization is analogous
to that proposed in the previous section, thus the focus in this section is to discuss the time discretization of the
problem.

To integrate in time, we use a third order multistep scheme. In particular, we use a backward differentiation
formula (BDF), since as discussed in [36, 37] these are highly appropriate for very stiff problems such as ours. The
BDF evaluates the time derivative in Eq. (3) by differentiating the formula that extrapolates the field θn+1 with
a third order Lagrange polynomial that uses fields at times θn, θn−1, θn−2, i.e.:

θ(t) := `n+1(t)θn+1 + `n(t)θn + `n−1(t)θn−1 + `n−2(t)θn−2

`k being a Lagrange polinomial of order 3:

`k(t) =
∏

n− 2 ≤ m ≤ n+ 1
m 6= k

t− tm
tk − tm

, n− 2 ≤ k ≤ n+ 1

Then,
∂tθ

n+1 = `′n+1(tn+1)θn+1 + `′n(tn+1)θn + `′n−1(tn+1)θn−1 + `′n−2(tn+1)θn−2 (37)

For the fixed time step case, the time differentiation simplifies to the equation:

∂tθ
n+1 =

11θn+1 − 18θn + 9θn−1 − 2θn−2

6∆t
(38)

In stiff problems, a variable time step scheme with an adaptative step control that adjusts itself conveniently to
the different regimes is advisable. The expressions for the time derivative (37) for the variable time step case are:

`′n+1(tn+1) =
∆t2n + 4∆tn+1∆tn + ∆tn∆tn−1 + 3∆t2n+1 + 2∆tn−1∆tn+1

(∆tn + ∆tn+1 + ∆tn−1)(∆tn + ∆tn+1)∆tn+1

`′n(tn+1) =
∆t2n + ∆tn∆tn−1 + ∆tn−1∆tn+1 + ∆t2n+1 + 2∆tn∆tn+1

(∆tn + ∆tn−1)∆tn∆tn+1

`′n−1(tn+1) =
∆tn+1(∆tn + ∆tn+1 + ∆tn−1)

(∆tn + ∆tn+1)∆tn∆tn−1

`′n−2(tn+1) =
∆tn+1(∆tn + ∆tn+1)

((∆tn + ∆tn−1)2 + ∆tn∆tn+1 + ∆tn−1∆tn+1)∆tn−1
,

where ∆tn = tn − tn−1.
The variable time step scheme controls the step size according to the general ideas proposed by [45, 36], and

adapted to our particular case with parameters taken from [46]. The result of an integration at time n + 1 is
accepted, depending on the estimated error E for the fields. The error estimation E is based on the difference
between the solution obtained with a third and a second order scheme. Then essentially the new time step is
evaluated as follows:

hnew = s

(
E

tolerance

)−1/(q+1)

hold.
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In practice, this expression is tuned and a maximum increase of the step size is allowed. Here s is a safety factor,
and q is the order of the numerical scheme. Acceptance of the result of an integration means that E is below a
certain tolerance, which is explained in the subsection 4.2. If the result is accepted, a new time step is proposed
according to the law:

hnew =

{
shold

(
E

tolerance

)p
, E > tolerance ·

(
5
s

)1/p

5hold, E ≤ tolerance ·
(
5
s

)1/p
,

where h is the size of the time step and s = 0.9, p = −0.33 (q = 2). In case of rejection, the step is decreased as
follows:

hnew = s

(
E

tolerance

)−1/(q+1)

hold,

with q = 3.

4.1 The fully implicit method

BDFs are a particular case of multistep formulas which are implicit, thus the BDF scheme implies solving at each
time step the problem (see [36]):

∂ty
n+1 = f(yn+1),

which in the particular problem under consideration becomes:

0 = ∇ · un+1 (39)

0 = Rθn+1 ~e3 −∇Pn+1 + div

(
ν(θn+1)

ν0
(∇un+1 + (∇un+1)T )

)
(40)

∂tθ
n+1 = −un+1 · ∇θn+1 + ∆θn+1, (41)

where ∂tθ
n+1 is replaced by the expression (37). The solution to the system (39)-(41) is our benchmark for

transitory and time-dependent regimes.
The nonlinear terms on the right-hand side of these equations are approached at each time step, n + 1, by a

Newton-Raphson method similar to the one described before to find numerical stationary solutions. We assume
that the solution at time n + 1 is a small perturbation Ỹ of an approximate solution. Linear equations for Ỹ
are derived by introducing the analogue of expression (13) into the nonlinear terms of equations (39)-(41) and
cancelling all the nonlinear terms in tilda. The resulting linearized terms are the same as those appearing in Eqs.
(14)-(17). For the first step s = 0, we take as an approximate solution the solution at time n. The unknown
perturbation fields Ỹ are expanded by Eq. (28), which is replaced in the equations and boundary conditions at the
collocation points according to the rules described in the previous section. In particular, the improved boundary
conditions for pressure, previously described, are used. A linear system is obtained:

Ay = b (42)

which is iteratively solved at each time step n + 1 until the perturbation Ỹ is below a tolerance. Here, A is a
matrix of order 4 × L ×M and y is the vector containing the unknown coefficients of the fields Ỹ . As previously
performed the matrix A is converted into a full rank matrix by removing the projection of equation (40) at node
j = 1, i = 2, and fixing the pressure by adding at this point the equation bP10 = 0. This provides accurate results
and is computationally cheaper than the pseudoinverse method.

4.2 The semi-implicit method

Implicit methods are a robust and numerically stable choice for stiff problems. However, they may be rather
demanding computationally, since at each time step they require several matrix inversions to solve the system (42)
at successive iterations. This subsection proposes an alternative semi-implicit scheme that is computationally less
demanding than the fully implicit scheme.

Similarly to the fully implicit method, the semi-implicit scheme approaches the nonlinear terms in Eqs. (39)-(41)
by assuming that the solution at time n+1 is a small perturbation Z̃ of the solution at time n; thus, zn+1 = zn+Z̃.
Once linear equations for Z̃ are derived, the equations are rewritten by replacing Z̃ = zn+1 − zn. Additionally,
the linear system is completed by using expression (37) for the time derivative of the temperature. The solution is
obtained at each step by solving the resulting linear equation for variables in time n+ 1. As before, the unknown
fields are expanded by Eq. (28), which is replaced in the equations and boundary conditions at the collocation
points according to the rules described in the previous section. At each time step the linear system:

Ay = b (43)
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Figure 4: Transition of an initial data to a stationary solution with Γ = 3.4, R = 75 for the exponential viscosity
law (5).

M=36 M=38 M=40 M=42
L=29 0.0030 - 0.0002i 0.0046 0.0046 0.0047

-8.2205 -8.4419 -8.4419 -8.4419
L=31 0.0017 -0.0019 0.0017 0.0017

-8.4418 -8.4417 -8.4418 -8.4418
L=33 0.0011 0.0011 -5.79e-4 -1.11e-4i 7.95e-4 + 6.30e-5i

-8.4418 -8.4418 -8.4417 -8.4418

Table 1: Computation of the two eigenvalues with largest real part for the stationary solution obtained at Γ = 3.4,
R = 78 at different expansions L×M .

is solved, where A is a matrix of order 4 × L ×M and y is the vector containing the unknown coefficients of the
expansions of the zn+1 fields. The matrix is transformed into a full rank matrix with the same procedure used for
the fully implicit case.

The fully implicit and the semi-implicit methods are implemented with a variable time step scheme that requires
an error estimation based on the difference between the solution obtained with a third and a second order scheme.
The second order scheme approaches the time derivative of the temperature as follows:

∂tθ
n+1 =

(∆t2n + 2∆tn∆tn+1)θn+1 − (∆tn + ∆tn+1)2θn + ∆t2n+1θ
n−1

∆tn∆tn+1(∆tn+1 + ∆tn)
, (44)

where ∆tn = tn − tn−1. In practice, this changes the linear system to be solved at each step, as follows:

Ãỹ = b̃

The computation of the second order solution thus leads to an additional matrix inversion at each time step, and
as a consequence the full calculation is slowed down considerably. To avoid this additional inversion, we estimate
the error by measuring instead how well the third order solution y satisfies the second order system, i.e.:

E =
‖b̃− Ãy‖
‖b‖ (45)

where ‖ · ‖ represents the l2 norm. Acceptance of the result of an integration means that E is below a tolerance
that we fix at 5 · 10−6. Once the error is estimated, the step size is determined as explained at the beginning of
Section 4.

4.3 Other semi-implicit schemes

For completeness, we describe here alternative semi-implicit schemes that have been successfully used in fluid
mechanics and convection problems with constant viscosity and finite Prandtl number. Despite its success in many
fluid mechanics set-ups, this scheme is insufficient for our problem.
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M=30 M=40 M=50 M=60 M=70 M=80
L=31 0.9433 + 0.7023i 0.2227 0.5829 + 0.4345i 0.3926 0.4217 0.2265

0.9433 - 0.7023i -2.9525 0.5829 - 0.4345i -2.3225 + 0.7449i -2.1744 + 0.7450i -2.6555 + 0.7536i
L=37 0.3564 0.1837 0.1369 0.1318 0.1834 0.0946

-2.1572 + 0.0829i -2.1273 + 0.0843i -2.6814 -2.0368 + 0.0843i -2.1427 + 0.0841i -2.1495+ 0.0964i
L=43 -0.2039 + 0.0913i 0.1767 0.0773 +0.0371i -0.0289 + 0.0886i 0.0585 0.0464

-0.2039 - 0.0913i -2.7849 + 0.0546i 0.0773 -0.0371i -0.0289 - 0.0886i -2.1576+9.7059e-3i -2.1308
L=49 -0.1436 0.0836 0.0705 0.0379 9.7501e-3 4.7754e-3

-2.4633 +0.8885i -2.8147 + 0.0127i -2.3698 -2.3625 -2.1391+ 6.3240e-4i -2.1482
L=55 -0.1382 0.0571 0.0315 5.8407e-3 3.7262e-3 7.8574e-4

-2.5619 + 0.8760i -2.1569 -2.1893 + 1.0669e-3i -2.1618 + 6.7549e-4i -2.1597 -2.1598
L=61 0.0913 0.0261 4.5781e-3 1.5021e-3 6.4589e-4 9.8951e-5

-2.6323 + 0.1950i -2.1623 -2.1606 -2.1603 -2.1599 -2.1599

Table 2: Computation of the two eigenvalues with largest real part for the stationary solution obtained at Γ = 3.4,
R = 110 at different expansions L×M .

The adaptation of the numerical scheme described in [34, 33] to the problem under study is as follows; the semi-
implicit scheme at each time step decouples the heat (3) and the momentum equations (2). The time discretization
of the heat equation is as follows:

3θn+1 − 4θn + θn−1

2∆t
+ 2un · ∇θn − un−1 · ∇θn−1 = ∆θn+1, (46)

where the time derivative of the temperature field has been evaluated with a second order fixed step BDF formula.
Once θn+1, is known the velocity and pressure at time tn+1, are obtained by solving the following linear system in
the unknown fields:

∇ · un+1 = 0,

∇Pn+1 = Rθn+1 ~e3 + div

(
ν(θn+1)

ν0

(
∇un+1 + (∇un+1)T

))
. (47)

We implement this scheme by expanding the unknown fields in the equations (46) and (47) with Eq. (28). They
are solved at successive times tn. The discrete version of (46) is a linear system with L×M unknowns, while the
discrete version of (47) has 3 × L ×M unknowns. The decoupled nature of the procedure gives a certain speed
advantage to this method as compared with the previous one. However, the results presented in the next section
confirm that this method is not robust when applied to the differential algebraic equations under study. Increasing
the order of the method or using a variable step technique does not improve the output provided by this approach.

5 Results

This section completes the description provided in [18] on the solutions of the convection problem in which the
viscosity depends exponentially on temperature. By describing stationary, transitory and time dependent regimes
for the problem under study, the consistency between the reported numerical procedures is confirmed.

5.1 Stationary solutions and their stability

Figure 5 displays the bifurcation diagram obtained from the analysis of a fluid layer in a finite domain with aspect
ratio Γ = 3.4. Viscosity depends on the temperature according to the exponential law (5), with µ = 0.0862. The
viscosity contrast across the fluid layer depends on R in such a way that at the instability threshold this contrast is
around 6 · 102, while at the maximum Rayleigh numbers displayed in Figure 5 it is of the order of 3.1 · 104. Stable
branches are displayed as solid lines, while unstable branches are dashed.

The diagram displayed in Fig. 5 is obtained by branch continuation techniques, as explained in [18]. The
solutions are obtained with the procedure described in Section 3.2. The vertical axis represents the sum |bθ11|+ |bθ12|.
These are coefficients obtained from the expansion of the temperature field:

θ(x, z, t) =

dL/2e∑

l=1

M−1∑

m=0

bθlm(t)Tm(z) cos((l − 1)x)

+

dL/2e∑

l=2

M−1∑

m=0

cθlm(t)Tm(z) sin((l − 1)x).
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Figure 5: Bifurcation diagram for a fluid with viscosity dependent exponentially on temperature (µ = 0.0862 in
law (5)) at Γ = 3.4. Stable branches are solid while unstable branches are dashed. Solutions are displayed at the
R numbers highlighted with vertical dashed lines.
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Figure 6: Transition of an initial data to a stationary solution with Γ = 3.4, R = 78 for the exponential viscosity
law (5).

Most of the coefficients bθlm(t), cθlm(t) in this expansion are approximately zero, but others are not. As a represen-
tation of the whole spatial function, we select the sum of the significant coefficients |bθ11| and |bθ12|.

Table 1 confirms the convergence of the eigenvalues for a stationary solution obtained at Γ = 3.4, R = 78. At
this low R number, results have two significant decimal digits for expansions L = 29×M = 38 onwards. The results
confirm that this is a stable solution. The presence of a zero eigenvalue is expected due to the symmetry SO(2)
derived from the periodic boundary conditions. Periodic boundary conditions imply that arbitrary translations of
the solutions along the x-coordinate must also be solutions to the system. Thus, instead of an isolated fixed point
at the bifurcation threshold a circle of fixed points emerges[47]. The neutral direction is the direction connecting
fixed points on this circle. Table 2 shows the convergence results obtained for R = 110. At this larger R number
higher expansions are required; this is also expected because at large R numbers the viscosity contrast across the
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Figure 7: Temporal evolution of time dependent solution at Γ = 3.4 and R = 120 for the exponential viscosity law
(5).

fluid layer increases. For expansions L = 55×M = 60 onwards, a significant number of decimal digits is obtained.
Results displayed in Figure 5 are interpreted as follows: at the bifurcation threshold the fluid undergoes a

subcritical bifurcation, as reported in [48, 6, 18, 49]. The instability threshold of the unstable branch from the
conductive solution occurs at R = 73.7544 which coincides with the prediction of the linear theory R = 73.7501
within a 0.006%. These results confirm the high accuracy of spectral methods which is above for instance the
outcome reported in [3] where using finite volume methods obtain on similar thresholds an accuracy of 0.4%. The
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unstable branch bifurcates at R ∼ 74, below the critical threshold for the conductive solution, in a saddle-node
bifurcation at which a stable stationary branch emerges. The pattern of the plume at this aspect ratio, consistent
with diagram 3 has wave number m = 1. The stable branch becomes unstable at R ∼ 118 through a Hopf
bifurcation. Stationary solutions are displayed at the different R numbers highlighted with vertical dashed lines.
These results extend those reported in [18], where the morphology of the plume has not been discussed. Images in
Fig. 5 show the evolution of the plume with the Rayleigh number. As reported in [1], three idealized shapes for
plumes are typically found: spout-shaped, where the tail of the plume is nearly as large as the head; mushroom-
shaped; and balloon-shaped. Figure 5 confirms that at low R numbers (R = 80) the plume is spout-shaped. At
higher R = 90, 100 the plume is more rounded at the top and becomes closer to a balloon-shaped plume while at
R = 118 the plume becomes closer to a mushroom-shaped one. Regarding the velocity field, Moresi and Solomatov
report in [8] that from 104 − 105 viscosity contrasts a stagnant lid develops, and the upper part of the fluid, where
the viscosity is much larger, does not move. The velocity fields overlapping the temperature patterns in Figure 5
confirm that at the larger viscosity contrasts obtained at R = 118, the velocity in the upper part of the fluid is
almost null.

The set of stationary solutions obtained with the techniques reported in Section 3, as already noted by Plá et al.
in [18] is more comprehensive than what one would expect from mere direct time evolution simulations, because the
latter do not prove anything about the asymptotic regime. However, as also noted by these authors, simulations of
the evolution in time are also necessary to describe time-dependent regimes which are present at high R numbers.
From the computational point of view, the Newton-Raphson method is more advantageous than the time evolution
schemes, as it finds a stationary solution in less than 50 iterations, while the semi-implicit scheme needs around
200 iterations (matrix inversions) to find the same solution beginning from the same initial data.

5.2 Time dependent and transitory regimes

Figure 4(a) represents the time evolution of the coefficient bux
21 in a transitory regime towards a fixed point. A

rescaled Time= 10t is represented on the horizontal axis, where t is the dimensionless time. The simulation is
produced at R = 75, which is above the instability threshold of the conductive solution, as confirmed in Figures
3 and 5. The results displayed in Figure 4(a) are obtained with all the numerical schemes described in Section 4.
Figure 4(b) represents the evolution of the error versus time for the different schemes. The error is defined with
respect to the benchmark solution obtained with the fully implicit approach.

Despite the good performance of all schemes at low R number, at higher R numbers the semi-implicit scheme
reported in Section 4.3 breaks. Fig 6(a) confirms this point by depicting at R = 78 the time evolution of the
coefficient bux

21 in a transitory regime towards a fixed point. The schemes in Section 4.3 fail to solve the transition
with fixed and variable time steps, which is nevertheless well determined with the implicit and semi-implicit scheme
in Section 4.2. Fig 6(b) reports the evolution of the error with respect the benchmark solution for the different
schemes.

Figure 7 confirms the existence of time-dependent convection after the Hopf bifurcation occurred at R = 118.
Fig 7(a) displays the time evolution of the coefficient bux

2m versus time. The dynamics is rather chaotic as is
foreseen for high Rayleigh numbers. This is truly the case as in our study as the viscosity ν0 used to define R is
the maximum viscosity in the fluid layer. A redefined R number from the smallest viscosity, as used other studies,
would be four order of magnitudes bigger than this one. Snapshots of the plume in the time-dependent regime
are shown in Figures 7(c)–7(h). In this time series, hot blobs ascend in the central part of the plume and these are
released in the upper part of the fluid. Fig 7(b) shows the evolution of the error for the semi-implicit scheme.

The time dependent solutions displayed in Figure 7 although confirms the validity of the method do not
particularly exhibit the influence of the symmetry, and thus the proposed spectral scheme does not show its power
on this respect for the chosen test problem. However for other viscosity dependencies as the ones reported in [11]
the current spectral method has successfully described solutions whose existence is related to the presence of the
symmetry.

As regards computational performance, the semi-implicit scheme requires higher expansions than the fully
implicit scheme in order to achieve stability, but as it eventually requires fewer matrix inversions –both because
it requires only one inversion at each time step and because larger step sizes are allowed– it is slightly faster than
the fully implicit scheme. On average, for the simulations reported in this article the semi-implicit scheme requires
80 time units of time for doing what the fully implicit scheme takes 100 time units. Thus regarding CPU time the
semi-implict method is more advantageous.

6 Conclusions

This paper addresses the numerical simulation of time-dependent solutions of a convection problem with viscosity
strongly dependent on temperature at infinite Prandtl number. We propose a spectral method which deals with
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the primitive variables formulation. Time derivatives are evaluated by backwards differentiation formulas (BDFs),
which are adapted to perform with variable time step. BDFs are a particular case of multistep formulas which are
implicit. We solve the fully implicit problem and compare it with a semi-implicit method. For the problem under
study, the proposed semi-implicit method is shown to be accurate and to have a slightly faster performance than
the fully implicit scheme. We further show that other semi-implicit schemes, which provide a good performance in
classical convection problems with constant viscosity and finite Pr number, do not succeed in this set-up.

The time-dependent scheme succeeds in completing the results reported for this problem by [18]. Assisted by
bifurcation techniques, we have gained insight into the possible stationary solutions satisfied by the basic equations.
The morphology of the plume is described and compared with others obtained in the literature. Stable stationary
solutions become unstable through a Hopf bifurcation, after which the time-dependent regime is solved by the
spectral techniques proposed in this article.

The time dependent solutions found for the exponential viscosity law do not evidence the influence of the
symmetry. However in [11] for different viscosity dependences, at high-moderate viscosity contrasts, it is reported
that the proposed scheme is successful to this end. Finite element methods and finite volume methods have proven
to be successful to reach extremely large viscosity contrasts up to 1010-1020 and we have not improved these
limits with spectral methods. However at moderate viscosity contrasts the purpose of later techniques seems to be
justified by novel dynamical evolutions derived from the presence of symmetries where they can play a better role
than other discretizations and become the standard method as has been the case in classical convection problems
with constant viscosity [50, 33, 35, 51].
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We focus on the study of a convection problem in a two-dimensional setup in the presence of the O(2) symmetry.
The viscosity in the fluid depends on the temperature as it changes its value abruptly in an interval around a
temperature of transition. The influence of the viscosity law on the morphology of the plumes is examined for
several parameter settings, and a variety of shapes ranging from spout- to mushroom-shaped are found. We
explore the impact of the symmetry on the time evolution of this type of fluid, and we find solutions which are
greatly influenced by its presence: at a large aspect ratio and high Rayleigh numbers, traveling waves, heteroclinic
connections, and chaotic regimes are found. These solutions, which are due to the presence of symmetry, have
not been previously described in the context of temperature-dependent viscosities. However, similarities are
found with solutions described in other contexts such as flame propagation problems or convection problems
with constant viscosity also in the presence of the O(2) symmetry, thus confirming the determining role of the
symmetry in the dynamics.
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I. INTRODUCTION

This paper addresses the numerical study of convection at
infinite Prandtl number in fluids in which viscosity strongly
depends on temperature in the presence of the O(2) symmetry.
Convection in fluids with temperature-dependent viscosity
is of interest because of its importance in engineering and
geophysics. Linear and quadratic dependencies of the viscosity
on temperature have been discussed [1–4], but in order
to address the Earth’s upper mantle convection, in which
viscosity contrasts are of several orders of magnitude, a
stronger dependence with temperature must be considered.
This problem has been approached both in experiments [5–8]
and in theory [9–14]. In these contexts, the dependence
of viscosity with temperature is expressed by means of
an Arrhenius law. In [10], the exponential dependence is
discussed as an approach to the Arrhenius law by means
of a Taylor series around a reference temperature. This is
also called the Frank-Kamenetskii approximation (see [15]).
Viscosity has also been considered when it depends on other
magnitudes such as depth [16,17], a combination of both
depth and temperature [17], or pressure [18]. However, it
is commonly accepted [18,19] that in the Earth’s interior,
viscosity depends most significantly on temperature. The usual
approach in numerical models of the mantle [12,17,20] is to
consider constant thermal conductivity. This approach has also
been verified in fluid experiments seeking to model mantle
convection [7]. However, studies also exist in which variations
on thermal conductivity are considered [21–23].

Here, we focus on the study of a fluid in which the
viscosity changes abruptly in a temperature interval around
a temperature of transition. This defines a phase change over
a mushy region, which expresses the melting of minerals or
other components. Melting and solidification processes are
important in magma chamber dynamics [24,25], in volcanic
conduits [26,27], in the formation of chimneys in mushy layers
[28], in metal processing in industry (see, for example, [29]),
etc. In phase transitions, other fluid properties in addition to

viscosity may change abruptly, such as density or thermal
diffusivity. However, in this study we consider solely the study
of effects due to the variability of viscosity, since consideration
of the effect of simultaneous variations on all the properties
prevents a focused understanding of the exact role played
by each one of these properties. Viscosity is a measure of
fluid resistance to gradual deformation, and in this sense very
viscous fluids are more likely to behave rigidly when compared
to less viscous fluids. When examining the proposed transition
with temperature, we focus on the global fluid motion when
some parts of it tend to be more rigid than others. Disregarding
the variations on density in this transition moves us away
from instabilities caused by abrupt density changes such as
the Rayleigh-Taylor instability, in which a denser fluid over a
lighter one tends to penetrate it by forming a fingering pattern.
A recent article by Ulvrová et al. [30] deals with a problem
similar to ours, but takes into account variations both in density
and in viscosity. Thermal conductivity effects are related to
the relative importance of heat advection versus diffusion. In
this way, diffusive effects are important at large conductivity,
while heat advection by fluid particles is dominant at low
conductivity. The contrasts arising from these variations are
beyond the scope of our work and thus are disregarded here.

This paper addresses the convection of a two-dimensional
(2D) fluid layer with temperature-dependent viscosity and
periodic boundary conditions possessing the O(2) symmetry.
The motivation arises from the fact that symmetric systems
typically exhibit more complicated bifurcations than nonsym-
metric systems and introduce conditions and degeneracies in
bifurcation analysis. There exist numerous novel dynamical
phenomena whose existence is fundamentally related to the
presence of symmetry [31–34]. Solutions related to the
presence of symmetry include rotating waves [35], mod-
ulated waves [36,37], slow “phase” drifts along directions
of broken symmetry [38], and stable heteroclinic cycles
[37,39,40]. SO(2) symmetry is present in problems described
by the Navier-Stokes [41,42] or the Kuramoto-Sivashinsky
[40,43] equations with periodic boundary conditions, since the
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Abstract

We focus the study of a convection problem in a 2D set–up in the presence of the O(2) symmetry. The
viscosity in the fluid depends on the temperature as it changes its value abruptly in an interval around a
temperature of transition. The influence of the viscosity law on the morphology of the plumes is examined
for several parameter settings, and a variety of shapes ranging from spout to mushroom shaped is found.
We explore the impact of the symmetry on the time evolution of this type of fluid, and find solutions which
are greatly influenced by its presence: at a large aspect ratio and high Rayleigh numbers, traveling waves,
heteroclinic connections and chaotic regimes are found. These solutions, which are due to the symmetry
presence, have not been previously described in the context of temperature dependent viscosities. However,
similarities are found with solutions described in other contexts such as flame propagation problems or
convection problems with constant viscosity also under the presence of the O(2) symmetry, thus confirming
the determining role of the symmetry in the dynamics.

1 Introduction

This paper addresses the numerical study of convection at infinite Prandtl number in fluids in which viscosity
strongly depends on temperature in the presence of O(2) symmetry. Convection in fluids with temperature-
dependent viscosity is of interest because of its importance in engineering and geophysics. Linear and quadratic
dependencies of the viscosity on temperature have been discussed [47, 52, 22, 65], but in order to address the
Earth’s upper mantle convection, in which viscosity contrasts are of several orders of magnitude, a stronger
dependence with temperature must be considered. This problem has been approached both in experiments
[53, 13, 6, 67] and in theory [45, 7, 50, 44, 60, 61]. In these contexts, the dependence of viscosity with temperature
is expressed by means of an Arrhenius law. In [7], the exponential dependence is discussed as an approach to
the Arrhenius law by means of a Taylor series around a reference temperature. This is also called the Frank-
Kamenetskii approximation (see [27]). Viscosity has also been considered when it depends on other magnitudes
such as depth [10, 5], a combination of both depth and temperature [5] or pressure [51]. However, it is commonly
accepted [20, 51] that in the Earth’s interior, viscosity depends most significantly on temperature. The usual
approach in numerical models of the mantle [44, 5, 63] is to consider constant thermal conductivity. This
approach has also been verified in fluid experiments seeking to model mantle convection [6]. However, studies
also exist which consider variations on thermal conductivity [23, 24, 68].

Here, we focus on the study of a fluid in which the viscosity changes abruptly in a temperature interval
around a temperature of transition. This defines a phase change over a mushy region, which expresses the
melting of minerals or other components. Melting and solidification processes are important in magma chamber
dynamics [8, 9], in volcanic conduits [25, 42], in the formation of chimneys in mushy layers [15], in metal
processing in industry (see, for example, [55]), etc. In phase transitions, other fluid properties in addition
to viscosity may change abruptly, such as density or thermal diffusivity. However, in this study we consider
solely the study of effects due to the variability of viscosity, since consideration of the effect of simultaneous
variations on all the properties prevents a focused understanding of the exact role played by each one of these
properties. Viscosity is a measure of fluid resistance to gradual deformation, and in this sense very viscous
fluids are more likely to behave rigidly when compared to less viscous fluids. When examining the proposed
transition with temperature, we focus on the global fluid motion when some parts of it tend to be more rigid
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than others. Disregarding the variations on density in this transition moves us away from instabilities caused
by abrupt density changes such as the Rayleigh Taylor instability, in which a denser fluid over a lighter one
tends to penetrate it by forming a fingering pattern. A recent article by M. Ulvrová et al. [64] deals with a
similar problem to ours, but takes into account both variations in density and in viscosity. Thermal conductivity
effects are related to the relative importance of heat advection versus diffusion. In this way, diffusive effects are
important at large conductivity, while heat advection by fluid particles is dominant at low conductivity. The
contrasts arising from these variations are beyond the scope of our work and thus are disregarded here.

This paper addresses the convection of a 2D fluid layer with temperature-dependent viscosity and periodic
boundary conditions possessing the O(2) symmetry. The motivation arises from the fact that symmetric systems
typically exhibit more complicated bifurcations than non-symmetric systems and introduce conditions and
degeneracies in bifurcation analysis. There exist numerous novel dynamical phenomena whose existence is
fundamentally related to the presence of symmetry [16, 29, 31, 26]. Solutions related to the presence of symmetry,
include rotating waves [54], modulated waves [49, 2], slow “phase” drifts along directions of broken symmetry
[41], and stable heteroclinic cycles [2, 33, 21]. The SO(2) symmetry is present in problems described by
the Navier-Stokes [30, 62] or the Kuramoto-Sivashinsky [21, 3] equations with periodic boundary conditions,
since the equations are invariant under translations and the boundary conditions do not break this invariance.
Additionally, if the reflection symmetry exists, the full symmetry group is the O(2) group. While in classical
convection problems (with constant viscosity), the study of the solutions and bifurcations in the presence of
symmetries has been the object of much attention [38, 32, 46, 43, 40, 39, 19, 4], its counterpart in fluids with
viscosity depending on temperature has received less consideration. Our 2D physical set-up is idealized with
respect to realistic geophysical flows occurring in the Earth’s interior, as these are 3D flows moving in spherical
shells [11, 12]. Under these conditions, the symmetry present in the problem is formed by all the orientation
preserving rigid motions of R3 that fix the origin,which is the SO(3) group [14, 28, 36]. The effects of the Earth’s
rotation are negligible in this respect and do not break this symmetry, since the high viscosity of the mantle
makes the Coriolis number insignificant. The link between our simplified problem and these realistic set-ups
is that the O(2) symmetry is isomorphic to the rotations along the azimuthal coordinate, which form a closed
subgroup of SO(3). Additionally, the O(2) symmetry is present in systems with cylindrical geometry, which
provide an idealized setting for volcanic conduits and magma chambers. The SO(2) symmetry is also present
in 3D flows moving in spherical shells which rotate around an axis.

In this way, specific symmetry-related solutions found in our setting are expected to be present in these other
contexts. The interest of 2D numerical studies for representing 3D time-dependent thermal convection with
constant viscosity has been addressed in [56]. The authors report that in turbulent regimes at high Rayleigh
numbers, the flow structure and global quantities such as the Nusselt number and the Reynolds number show
a similar behaviour in 3D and 2D simulations as far as high values of the Prandtl number are concerned. In
some sense, these results suggest that our simulations might be illustrative for the 3D case, since although
they are far from a turbulent regime and do not correspond to the case of constant viscosity, they have been
performed according to the infinite Prandtl number approach. In this article we show that typical solutions
of systems with symmetries, as previously reported in diverse contexts [2, 21, 66], are also present in mantle
convection and magma-related problems. We report the presence of traveling waves and limit cycles near
heteroclinic connections after a Hopf bifurcation. We do this by means of bifurcation analysis techniques an
direct numerical simulations and of the full partial differential equations system.

The article is organized as follows: In Section 2, we formulate the problem, providing the description of
the physical set-up, the basic equations and boundary conditions. In Section 3 we present the viscosity law
under consideration and discuss several limits in which previously studied dependencies are recovered. Section 4
summarizes the numerical methods used to sketch an outlook of the solutions displayed by the system. Section
5 discusses the solutions obtained for a broad parameter set. Finally Section 6 presents the conclusions.

2 Formulation of the problem

As shown in Figure 1 we consider a fluid layer, placed in a 2D container of length L (x coordinate) and depth d
(z coordinate). The bottom plate is at temperature T0 and the upper plate is at T1, where T1 = T0 −∆T and
∆T is the vertical temperature difference, which is positive, i.e, T1 < T0.

The magnitudes involved in the equations governing the system are the velocity field u = (ux, uz), the
temperature T , and the pressure P . The spatial coordinates are x and z and the time is denoted by t.
Equations are simplified by taking into account the Boussinesq approximation, where the density ρ is considered
as constant everywhere except in the external forcing term, where a dependence on temperature is assumed,
as follows ρ = ρ0(1− α(T − T1)). Here ρ0 is the mean density at temperature T1 and α the thermal expansion
coefficient.
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Figure 1: Problem set-up. A 2D container of length L and depth d with periodic lateral boundary conditions.
The bottom plate plate is at temperature T0 and is rigid, while at the upper plate the temperature is T1

(T1 < T0) and free slip.

The equations are expressed with magnitudes in dimensionless form after rescaling as follows: (x′, z′) =
(x, z)/d, t′ = κt/d2, u′ = du/κ, P ′ = d2P/(ρ0κν0) , θ′ = (T − T1)/(∆T ). Here, κ is the thermal diffusivity
and ν0 is the maximum viscosity of the fluid, which is viscosity at temperature T1. After rescaling the domain,
Ω1 = [0, L)× [0, d] is transformed into Ω2 = [0,Γ)× [0, 1] where Γ = L/d is the aspect ratio. The system evolves
according to the momentum and the mass balance equations, as well a to the energy conservation principle.
The non-dimensional equations are (after dropping the primes in the fields):

∇ · u = 0, (1)

1

Pr
(∂tu + u · ∇u) = Raθ~e3 −∇P + div

(
ν(θ)

ν0
(∇u + (∇u)T )

)
, (2)

∂tθ + u · ∇θ = ∆θ. (3)

Here, ~e3 represents the unitary vector in the vertical direction, Ra = d4αg∆T/(ν0κ) is the Rayleigh number,
g is the gravity acceleration, Pr = ν0/κ is the Prandtl number. Typically for rocks Pr, is very large, since they
present low thermal conductivity (approximately 10−6m2/s) and very large viscosity (of the order 1020Ns/m2)
[20]. Thus, for the problem under consideration, Pr can be considered as infinite and the left-hand side term
in (2) can be made equal to zero. The viscosity ν(θ) is a smooth positive bounded function of θ, which in
our set-up represents a transition in the fluid, due for instance to the melting of minerals caused by an abrupt
change in viscosity at a certain temperature. This is discussed in detail in the following section.

For the boundary conditions, we consider that the bottom plate is rigid and that the upper surface is
non-deformable and free slip. The dimensionless boundary conditions are expressed as,

θ = 1, u = ~0, on z = 0 and θ = ∂zux = uz = 0, on z = 1. (4)

Lateral boundary conditions are periodic. Jointly with equations (1)-(3), these conditions are invariant under
translations along the x-coordinate, which introduces the symmetry SO(2) into the problem. In convection
problems with constant viscosity, the reflexion symmetry x → −x is also present insofar as the fields are
conveniently transformed as follows (θ, ux, uz, p) → (θ,−ux, uz, p). In this case, the O(2) group expresses the
full problem symmetry. The new terms introduced by the temperature dependent viscosity, in the current set-up
equation (2) maintain the reflexion symmetry, and the symmetry group is O(2).

3 The viscosity law

We consider that the viscosity depends on temperature, and that it changes more or less abruptly at a certain
temperature interval centered at a temperature of transition. This is expressed with an arctangent law which
reads as follows:

ν(T ) = A1 arctan(β{(T − T1)− b}) +A2 (5)

The parameter β controls how abrupt the transition of the viscosity with temperature is. Very high β values
imply that the viscosity transition occurs within a very narrow temperature gap, while a finite and not too
large value β assumes that the phase change happens over a mushy region of finite thickness [64]. For the
results reported in this article, we have fixed β = 0.9. As β is fixed, the viscosity transition always occurs in
a temperature interval with constant thickness ∆θ ∼ 0.23. The temperature at which the transition occurs is
controled by b. The constants A1 and A2 are adjusted by imposing that at the reference temperature T1 the
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Figure 2: Representation of the arctangent viscosity law versus the dimensionless temperature for different
parameters values; a) b = 10, a = 0.1 and different Ra values; b) a = 0.1, Ra = 1300 and different b values; c)
b = 10, Ra = 1300 and different a values.

viscosity law (5) must be ν0. On the other hand, in the limit T >> T1, for instance T −T1 = 2500, the viscosity
is fixed to a fraction a of the viscosity ν0. These conditions supply the system:

ν0 = A1 arctan(−βb) +A2

ν0a = A1 arctan(β{2500− b}) +A2

which has the solution:

A1 =
ν0(1− a)

arctan(−βb)− arctan(β(2500− b)) ,

A2 = ν0 −A1 arctan(−bβ).

In dimensionless form, the viscosity law becomes:

ν(θ)

ν0
= C1 arctan(β(Raθµ− b)) + C2 (6)

where C1 = A1/ν0 and C2 = A2/ν0. In this expression, Ra is the Rayleigh number, θ is the dimensionless
temperature, which takes values between 0 at the upper surface and 1 at the bottom. The parameter µ, defined
as µ = ν0κ/(d

3αg), is in this study fixed to µ = 0.0146. The parameter a is related to the inverse of the
maximum viscosity contrast on the fluid layer, although the viscosity ν0a may not correspond to any element of
the fluid layer. For instance Figure 2(a) shows the viscosity variation with temperature for different Rayleigh
numbers at a = 0.1 and b = 10. It is observed that at low Ra, Ra = 600, the viscosity is almost uniform in the
fluid layer, and it is only beyond Ra = 1000 that the sharp change in the viscosity is perceived. Figure 2(b)
shows the effect of varying b at Ra = 1300 and a = 0.1. If b is as small as 1, the transition occurs close to θ = 1
and most of the layer has low viscosity, while if b is very large at this Ra number most of the fluid has constant
viscosity ν0. It is interesting to relate the viscosity law as represented in these figures with the linear stability
analysis of a fluid layer with constant viscosity ν0, as presented in Figure 3. In this figure, one may observe that
the critical Ra number is approximately Rac ∼ 1100. On the other hand, in Figure 2(b) one may observe that if
b is large, the viscosity near the critical Rayleigh number is almost constant across the fluid layer. In this case,
the phase transition is noticed in the fluid at large Ra numbers, well above Ra = 1300, in a convection state in
which vigorous plumes are already formed, as may be deduced from Figure 2(a). Figure 3(a) confirms that at
this limit the instability threshold of the conductive state remains unchanged with respect to that obtained with
constant viscosity. On the other hand, if b is small, changes in the fluid viscosity are noticed at low Ra numbers
–below the critical threshold of a fluid with constant viscosity– and in this case the instability threshold of the
conductive state is affected by the phase transition. This is illustrated, for instance, in Figures 2(a) and 3(b).
For b = 10 and a = 0.1, the changes in the viscosity across the fluid layer are noticed from Ra = 800 onwards,
which is below the instability threshold obtained for constant viscosity. In this case, the instability thresholds
for the conductive solution are as those displayed in Figure 4, and thus the phase transition is perceived from
the beginning by weakly convective states.

We now discuss the relation between the arctangent law and an Arrhenius type law frequently used in the
literature to model mantle convection problems. This viscosity law is expressed according to [37, 20] as:

ν(θ) = ν0 exp

[
E∗

R∆θ

(
1

θ + t1
− 1

1 + t1

)]
(7)
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Figure 3: Critical instability curves of the Rayleigh number, Ra, versus the aspect ratio Γ at different wave
numbers m. The results are for a fluid layer a) with constant viscosity; b) with temperature dependent viscosity
µ = 0.0146 a = 0.1 and b = 30.
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Figure 4: Critical instability curves of the Rayleigh number, Ra, versus the aspect ratio Γ at different wave
numbers m. The results are for a fluid layer with temperature dependent viscosity µ = 0.0146, b = 10 and
a = 0.1 (thick line) or a = 0.01 (thin line).

where E∗ is the activation energy, R is the universal gas constant, ∆θ is the temperature drop across the fluid
layer and t1 is the surface temperature divided by the temperature drop across the layer. Figure 5 represents
the viscosity (7) versus the dimensionless temperature for E∗

R∆θ
= 0.25328 and t1 = 0.1 as considered by [37].

Additionally, several arctangent laws with different b values are displayed. In this representation, one may
observe the great similitude between the Arrhenius law and the arctangent law for b = 1. At larger b values,
the decaying rate between viscosities is still similar to an Arrhenius law; however, temperature intervals exist
with approximately constant viscosities ν0 and ν0a.

One of the effects of the viscosity contrasts in the fluid motion is that if they are very large, as achieved for
instance with the exponential or the Arrhenius law, they lead to a stagnant lid convection regime [44, 58, 59],
in which there exists a non mobile cap where heat is dissipated mainly by conduction over a convecting flow.
In [64, 17] a similar stagnant regime is obtained for a viscosity law similar to the one presented in this section.
In our setting, we have considered a free slip boundary at the top boundary, thus quiescence is not imposed.
This condition enables us to consider spontaneous transitions from stagnant to non stagnant regimes.

4 Numerical methods

Analysis of the solutions to the problem described by equations (1)-(3) and boundary conditions (4) is assisted by
time dependent numerical simulations and bifurcation techniques such as branch continuation. As highlighted
by [18, 48], the combination of both techniques provide a thorough insight into the solutions observed in the
system. A full discussion on the spectral numerical schemes used is given in [18]. For completeness, we now
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Figure 5: The law of the viscosity dependent on the temperature used in [37] with viscosity contrast of factor
10 against the arctangent law (6) with parameters b = 1, 5, 10, 30, Ra = 2500 and a = 0.1

summarize the essential elements of the numerical approach.

4.1 Stationary solutions and their stability

The simplest stationary solution to the problem described by equations (1)-(3) with boundary conditions (4) is
the conductive solution which satisfies uc = 0 and θc = −z+1. This solution is stable only for a range of vertical
temperature gradients which are represented by small enough Rayleigh numbers. Beyond the critical threshold
Rac, a convective motion settles in and new structures are observed which may be either time dependent or
stationary. In the latter case, the stationary equations, obtained by canceling the time derivatives in the system
(1)-(3) are satisfied by the bifurcating solutions. At the instability threshold of the conductive state, the growing
solutions are periodic and correspond to sine or cosine eigenfunctions with wave number m. Figures 3 and 4
display the critical instability curves for different m values as a function of the aspect ratio. The new solutions
depend on the external physical parameters, and new critical thresholds exist at which stability is lost, thereby
giving rise to new bifurcated structures. These solutions are numerically obtained by using an iterative Newton-
Raphson method. This method starts with an approximate solution at step s = 0, to which is added a small
correction in tilde:

(us + ũ, θs + θ̃, P s + P̃ ). (8)

These expressions are introduced into the system (1)-(3), and after canceling the nonlinear terms in tilde, the
following equations are obtained:

0 =∇ · ũ +∇ · us, (9)

0 =− ∂xP̃ − ∂xP s +
1

ν0
[L11(θs, usx, u

s
z) + L12(θs)ũx

+ L13(θs)ũz + L14(θs, usx, u
s
z)θ̃], (10)

0 =− ∂zP̃ − ∂zP s +
1

ν0
[L21(θs, usx, u

s
z) + L22(θs)ũx

+ L23(θs)ũz + (L24(θs, usx, u
s
z) + Ra)θ̃], (11)

0 =ũ · ∇θs + us · ∇θ̃ + us · ∇θs −∆θ̃ −∆θs. (12)
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Here, Lij (i = 1, 2, j = 1, 2, 3, 4) are linear operators with non-constant coefficients, which are defined as follows:

L11(θ, ux, uz) =2∂θν(θ)∂xθ∂xux + ν(θ)∆ux + ∂θν(θ)∂zθ(∂xuz + ∂zux), (13)

L12(θ) =2∂θν(θ)∂xθ∂x + ν(θ)∆ + ∂θν(θ)∂zθ∂x, (14)

L13(θ) =∂θν(θ)∂zθ∂x, (15)

L14(θ, ux, uz) =2∂θν(θ)∂xux∂x + 2∂2
θθν(θ)∂xθ∂xux + ∂θν(θ)∆ux

+ (∂xuz + ∂zux)(∂θν(θ)∂z + ∂2
θθν(θ)∂zθ), (16)

L21(θ, ux, uz) =2∂θν(θ)∂zθ∂zuz + ν(θ)∆uz + ∂θν(θ)∂xθ(∂zux + ∂xuz), (17)

L22(θ) =∂θν(θ)∂xθ∂z, (18)

L23(θ, ux, uz) =2∂θν(θ)∂zθ∂z + ν(θ)∆ + ∂θν(θ)∂xθ∂z, (19)

L24(θ, ux, uz) =2∂θν(θ)∂zuz∂z + 2∂θθν(θ)∂zθ∂zuz + ∂θν(θ)∆uz

+ (∂zux + ∂xuz)(∂θν(θ)∂x + ∂θθν(θ)∂xθ). (20)

The unknown fields ũ, P̃ , θ̃ are found by solving the linear system with the boundary conditions:

θ̃ = 0, ũ = ~0, on z = 0 and θ̃ = ∂zũx = ũz = 0, on z = 1. (21)

Then the new approximate solution s+ 1 is set to

us+1 = us + ũ, θs+1 = θs + θ̃, P s+1 = P s + P̃ .

The whole procedure is repeated for s + 1 until a convergence criterion is fulfilled. In particular, we consider
that the l2 norm of the computed perturbation should be less than 10−9.

The study of the stability of the stationary solutions under consideration is addressed by means of a linear
stability analysis. Now perturbations are added to a general stationary solution, labeled with superindex b:

u(x, z, t) = ub(x, z) + ũ(x, z)eλt, (22)

θ(x, z, t) = θb(x, z) + θ̃(x, z)eλt, (23)

P (x, z, t) = P b(x, z) + P̃ (x, z)eλt. (24)

The sign in the real part of the eigenvalue λ determines the stability of the solution: if it is negative, the
perturbation decays and the stationary solution is stable, while if it is positive the perturbation grows over time
and the conductive solution is unstable. The linearized equations are:

0 =∇ · ũ (25)

0 =− ∂xP̃ +
1

ν0
[L12(θb)ũx + L13(θb)ũz + L14(θb, ubx, u

b
z)θ̃] (26)

0 =− ∂zP̃ +
1

ν0
[L22(θb)ũx + L23(θb)ũz + (L24(θb, ubx, u

b
z) + Ra)θ̃] (27)

0 =ũ · ∇θb + ub · ∇θ̃ + ub · ∇θb −∆θ̃ + λθ̃, (28)

where the operators Lij are the same as those defined in equations (13)-(20). Equations (25)-(28) jointly with
its boundary conditions (identical to (21)) define a generalized eigenvalue problem.

The unknown fields Y of the stationary (9)-(12) and eigenvalue problems (25)-(28) are approached by means
of a spectral method according to the expansion:

Y (x, z) =

dL/2e∑

l=1

M−1∑

m=0

bYlmTm(z) cos((l − 1)x) +

dL/2e∑

l=2

M−1∑

m=0

cYlmTm(z) sin((l − 1)x). (29)

In this notation, d·e represents the nearest integer towards infinity. Here L is an odd number as justified in [18].
4 × L ×M unknown coefficients exist which are determined by a collocation method in which equations and
boundary conditions are imposed at the collocation points (xj , zi),

Uniform grid: xj = (j − 1)
2π

L
, j = 1, . . . , L;

Gauss–Lobatto: zi = cos

((
i− 1

M − 1
− 1

)
π

)
, i = 1, . . . ,M ;

according to the rules detailed in [18]. Expansion orders L and M are taken to ensure accuracy on the results:
details on their values are provided in the Results section.
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4.2 Time dependent schemes

Together with boundary conditions (4), the governing equations (1)–(3) define a time-dependent problem for
which we propose a temporal scheme based on a spectral spatial discretization analogous to that proposed in
the previous section. As before, expansion orders L and M are such that they ensure accuracy on the results
and details on their values are given in the following section. To integrate in time, we use a third order multistep
scheme. In particular, we use a backward differentiation formula (BDF), adapted for use with a variable time
step. The variable time step scheme controls the step size according to an estimated error E for the fields. The
error estimation E is based on the difference between the solution obtained with a third and a second order
scheme. The result of an integration at time n+ 1 is accepted if E is below a certain tolerance. Details on the
step adjustment are found in [18].

BDFs are a particular case of multistep formulas which are implicit, thus the BDF scheme implies solving
at each time step the problem (see [34]):

0 = ∇ · un+1 (30)

0 = Raθn+1 ~e3 −∇Pn+1 + div

(
ν(θn+1)

ν0
(∇un+1 + (∇un+1)T )

)
(31)

∂tθ
n+1 = −un+1 · ∇θn+1 + ∆θn+1, (32)

where ∂tθ
n+1 is replaced by a backward differentiation formula.

In [18], it has been proved that instead of solving the fully implicit scheme (30)-(32), a semi-implicit scheme
can produce results with a similar accuracy and fewer CPU time requirements. The semi-implicit scheme
approaches the nonlinear terms in equations (30)-(32) by assuming that the solution at time n + 1 is a small
perturbation Z̃ of the solution at time n; thus, zn+1 = zn + Z̃. Once linear equations for Z̃ are derived, the
equations are rewritten by replacing Z̃ = zn+1 − zn. The solution is obtained at each step by solving the
resulting linear equation for variables in time n+ 1.

5 Results

5.1 Exploration of stationary solutions in the parameter space

In this section we explore how stationary solutions obtained at a low aspect ratio Γ = 3.4 for the system (1)-(3)
depend on the parameters a and b of the viscosity law (6). We examine the shape and structure of the plumes
in a range of Rayleigh numbers from Ra = 2500 to Ra = 3500.

We first consider that the parameter b is large: for instance, as large as 30. In this case, Figure 2(b) confirms
that at the instability threshold the viscosity across the fluid layer is almost constant and equal to ν0, no matter
what the value of a may be. Thus, the viscosity transition becomes evident in the fluid once convection has
settled in at Ra numbers well above the instability threshold. Figure 6(a) shows the plume pattern observed at
Ra = 2500 for a = 0.1; although values a = 0.01 and a = 0.001 are not displayed, they provide a very similar
output. The plume is spout-shaped, with the tail of the plume nearly as large as the head. In the pattern, the
two black contour lines mark temperatures between which the viscosity decays most rapidly. These correspond
to the transition region in which the gradient of the viscosity law (6) is large. Thus one of the contours,
the coldest one, fits the temperature θ1 at which the viscosity has decayed by 5% from the maximum, i.e.,
ν = 0.95 ν0, while the second addresses θ2 = θ1 + ∆θ with temperature increment ∆θ = 0.23. The maximum
viscosity decay rate always takes place at a constant temperature increment, since the decaying rate of the law
(6) β, is the same through out all this study. At larger Rayleigh numbers, Ra = 3500, Figure 6(b) shows that
the head of the plume becomes more prominent. A comparison between Figure 6(b) and Figure 6(c) indicates
that the large viscosity contrast favors the formation of a balloon-shaped plume, with a thinner tail and more
prominent and rounded head. As regards the velocity fields, none of these patterns develop a stagnant lid
at the surface for any of the viscosity contrasts a considered, even though the upper part corresponds to the
region with maximum viscosity. This result is dissimilar to what is obtained in [64, 17]. In [17] it is argued
that the cause of these differences could be attributed to the transition sharpness controled by β, which in
this work has been considered to be smoother. Additionally, the results reported in [64] are obtained at larger
viscosity contrasts, and the fact that these need to be large enough for the development of a stagnant lid has
been addressed.

We now consider that the parameter b is small. As explained in Section 3, in this case the viscosity transition
occurs at low Ra numbers, below the instability threshold of the fluid with constant viscosity ν0. As low viscosity
also implies diminishing the critical Ra number, the overall effect is that for small b the instability threshold is
below that with constant viscosity ν0, and the phase transition is perceived by weakly convective states. Figure
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(a) b = 30, Ra = 2500, a = 0.1 (b) b = 30, Ra = 3500, a = 0.1 (c) b = 30, Ra = 3500, a = 0.001

(d) b = 10, Ra = 2500, a = 0.1 (e) b = 10, Ra = 3500, a = 0.1 (f) b = 10, Ra = 2500, a = 0.001

(g) b = 17, Ra = 2500, a = 0.1 (h) b = 17, Ra = 2500, a = 0.001 (i) b = 17, Ra = 3000, a = 0.001

Figure 6: (Color online). Plumes obtained for several values of the viscosity parameter b. The arrows indicate
the velocity field, while the contour colors represent the temperature ranging from hot (bottom plate) to cold
(upper plate). The two black contour lines indicate the temperatures between which viscosity decays most
rapidly.

6(d) shows the structure of the plume obtained for b = 10 and a = 0.1 at Ra = 2500. The head tends to be
spread over a wide area and the viscosity transition occurs at cold fluid zones away from the main plume. This
pattern is rather similar to those obtained with b = 5 or b = 1, except that for smaller b values the tail of
the plume tends to be thinner. Increasing the Ra number makes the tail of the plume thinner and spreads the
head of the plume in the upper part, as reflected in Figure 6(e). On the other hand, high Ra numbers shift the
viscosity transition towards colder temperature contours. As expected from the viscosity law (6), there is no Ra
number at which the whole fluid layer is “melted”, since this law always imposes that a transition occurs across
the fluid layer. Figure 6(f) reports the effect of diminishing the viscosity contrast a to a = 0.001 at Ra = 2500.
A mushroom-shaped plume with a thin tail and prominent head is observed. As before, none of these solutions
develop a stagnant lid at the surface for any of the examined viscosity contrasts a.

Intermediate values such as b = 17 interpolate these extreme patterns. Figure 6(g) shows the evolution from
Figure 6(d) to Figure 6(a) in which the black contour lines indicating the position of maximum viscosity decay
converge towards the ascending plume boundary, thus highlighting its shape. The head of the plume shrinks
and the tail strengthens. Diminishing a to the contrast 0.001 transforms the structure into a balloon-shaped
plume (Figure 6(h)), while an increase in the Ra number spreads the head of the plume in the upper fluid
towards a mushroom-shaped plume.

The structure of the observed plumes as a spout, balloon or mushroom shape follows the schematic profiles
reported in [37]. In the limit of low b, our viscosity law –as reported in Section 3– converges towards the
Arrehnius law used by these authors, and the plume shapes reported there are similar to ours. However, a
detailed comparison between both works is not possible as unlike these authors we include the Ra number in
the viscosity law, since this provides a better expression of the realistic situation in which the increment of
the Ra number is performed by increasing the temperature differences between the bottom and upper surfaces.
Other viscosity laws, such as the exponential law reported in [18] provide different plume structures, which are
mainly spout shaped.

The results reported in this section are obtained with expansions (L×M = 37× 44) except that in Figure
6(c), which corresponds to (L ×M = 47 × 42). Similarly to what is reported in [18]. The validity of these
expansions is decided by ensuring that it provides accuracy in the eigenvalue along the neutral direction due
to the SO(2) symmetry, which is always 0. This eigenvalue is lost if the expansions employed are insufficiently
large, because badly resolved basic states present noisy structures either at the fields themselves or at their
derivatives, and both contribute to the stability problem (26)-(28).

5.2 Bifurcation diagrams and time dependent solutions

Solutions to the system (1)-(3) experience bifurcations depending on the aspect ratio and on the Rayleigh
number. We now describe how these solutions vary along the dotted lines enhanced in Figure 4 for parameters
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Figure 7: (Color online). Bifurcation diagram as a function of the aspect ratio at Ra = 1300 for a fluid
with viscosity dependent on temperature (b = 10, a = 0.1). Stationary solutions are displayed at different
Ra numbers, which are highlighted by vertical lines. The arrows tag the branch points corresponding to the
disclosed patterns. The dashed branches are unstable, while the solid ones are stable.

µ = 0.0146 and b = 10. We consider for a the choices 0.1 and 0.01.
Figure 7 shows the branch bifurcation diagram as a function of the aspect ratio for Rayleigh number Ra =

1300 and a = 0.1. Branches are obtained by representing along the vertical axis the sum of the absolute value
of two relevant coefficients in the expansion of the temperature field, bθ11 and bθ12. Solid lines stand for stable
branches, while dashed lines are the unstable ones. The horizontal line at |bθ11| + |bθ12| = 1 corresponds to the
trivial conductive solution. At a low aspect ratio, the stable branch is that with wave number m = 1, and at a
higher aspect ratio the stable solutions increase their wave number to m = 2 and m = 3. The unstable branch
ending up with a saddle-node bifurcation and connecting the m = 1 with the m = 2 branch corresponds to a
mixed mode.

Stationary stable and unstable solutions, obtained at the positions indicated by arrows, are pictured. No
stagnant lid appears at the surface for any of the aspect ratios considered. The expansion orders required by
this figure to ensure accuracy are not the same along all branches. We have guaranteed that for successive
orders expansions the amplitude values displayed on the vertical axis of the bifurcation diagrams are preserved.
A rule of thumb is that high modes obtained at larger aspect ratios require higher expansions. Thus while for
mode m = 1 expansions (L×M = 37×44) are sufficient, for m = 2 and m = 3 at larger aspect ratios expansions
are increased up to (L×M = 61× 44).

Bifurcations are further analyzed at three different aspect ratios as a function of the Rayleigh number. Among
the many possible choices for the aspect ratios, we consider occurrences at which the existence of solutions related
to symmetries are found, such choices thereby serving our purpose of highlighting the importance of symmetries
in fluids with viscosity dependent on temperature. Figure 8 represents the branching obtained at Γ = 3.4 for
a = 0.1. The pictured plumes, which are computed for a rather low Rayleigh number, Ra = 1500, are spout-
shaped, with the tail of the plume nearly as large as the head. As already reported in the previous section for
increasing Ra numbers, plumes become balloon-shaped and beyond that mushroom-shaped. No stagnant lid is
observed at any Ra number. Several branches are distinguished. The branch related to mode m = 1 arises at
the lowest Ra number and is stable in the whole range displayed. Mode m = 2 emerges at Ra ∼ 860 from the
unstable conductive solution through an unstable branch, which becomes stable through a pitchfork bifurcation
at Ra ∼ 890. Results at this aspect ratio are obtained with expansions (L×M = 37× 44).

This simple diagram with simple stationary solutions obtained at a low aspect ratio is in contrast to those
with more complex solutions obtained at a larger aspect ratio. Figure 9 represents the bifurcations obtained
at Γ = 6.9 as a function of Ra for a = 0.01. Figure 9(a) examines the Ra interval from 800 to 1300. In this
range several stationary solutions are portrayed both stable and unstable. At Ra ∼ 1290, a Hopf bifurcation
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Figure 8: (Color online). Bifurcation diagram as a function of the Rayleigh number for a fluid with viscosity
dependent on temperature (b = 10, a = 0.1) at Γ = 3.4. Stationary solutions are displayed at the Ra number,
which is highlighted with the vertical line. The arrows tag the branch points corresponding to the disclosed
patterns.The dashed branches are unstable, while the solid ones are stable.

occurs at the branch of mode m = 3 (see Figure 9(b)). After the bifurcation, a traveling wave is found, as
illustrated in the phase portrait represented at Ra = 1300. The solution evolves in time by traveling towards
the left. This breaks the symmetry x → −x. However, the right traveling solution obtained by the symmetry
transformation also exists, as expected from equivariant bifurcation theory [16]. See [1] for further details. The
presence of traveling waves after a Hopf bifurcation has been reported in diverse contexts in under the presence
of the O(2) symmetry [2, 66, 21, 16], and here they are reported in the context of convection with variable
viscosity. At larger Ra numbers, up to Ra ∼ 1320, the traveling wave persists, while its frequency increases. A
stable fixed point with wavenumber m = 3 is found in the range Ra ∼ 1340 − 1380. A cycle limit appears at
around Ra ∼ 1400. In this regime, the time-dependent solution consists of plumes that weakly oscillate in the
horizontal direction around their vertical axis of symmetry. See [1] for further details. Close to Ra ∼ 1416, a
stable branch of fixed points emerges, which is visualized at Ra ∼ 1525. It shows the presence of plumes that are
non-uniformly distributed along the horizontal coordinate: two close plumes, which are asymmetric around their
vertical axis, and a third one that maintains its symmetry. None of the described solutions develop stagnant lids
at the surface. At low Ra numbers (i.e. Figure 9(a)) results are obtained with expansions (L×M = 47× 44),
while for higher Ra numbers (i.e. Figure 9(b)) results are obtained with expansions (L×M = 61× 44).

Figure 10 shows the bifurcation diagram obtained at Γ = 7.4 as a function of Ra for a = 0.1. The mode
m = 3 branch, marked with a solid black line, emerges at Ra ∼ 794. Figure 10(b) shows that at R ∼ 2190 the
branch undergoes a Hopf bifurcation. Beyond this point, solutions embedded in a projection over the coefficient
space are represented at the R values marked with vertical dotted lines. A limit cycle is observed at Ra = 2210
just above the bifurcation point. Its projection over the coefficient space displays a point at every time step of
the time series. The solution appears to reside in the neighbourhood of a heteroclinic connection between two
fixed points as it evolves into a quasi-stationary regime –near the large density of points– followed by a rapid
transition to a new quasi-stationary regime. The two fixed points between which the solution oscillates are
similar to the non-uniformly distributed plumes described in the previous paragraph (see [1] for further details).
A solution is found at Ra = 2300 that has a time-dependence in which the block of plumes shifts irregularly along
the horizontal direction, towards both the left and the right (see [1]). For increasing Ra numbers, the horizontal
motion persists, but the oscillation becomes more regular and pattern displacements along the x−coordinate are
gradually reduced. This is verified through simulations at Ra = 2350 and at Ra = 2400 (see [1]). The diagram
displayed in Figure 10(a) shows a gray solid line associated to a mode m = 2 stable branch that emerges by
means of a saddle node bifurcation jointly with an unstable branch. An irregular pattern obtained at Ra = 1800
for the unstable branch is included in this diagram. Once again, none of the solutions described at this aspect
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(a)

(b)

Figure 9: (Color online). Bifurcation diagrams as a function of the Rayleigh number for a fluid with viscosity
dependent on temperature (b = 10, a = 0.01) at Γ = 6.9. The dashed branches correspond to stationary unstable
solutions, while solid branches correspond to stationary stable ones. The gray lines indicate spatial patterns
with period 2, while the black ones are for period 3 patterns. a) Rayleigh number in the range 800-1300.
Stationary solutions are displayed at the Ra number highlighted with the vertical line. Arrows tag the branch
points corresponding to the disclosed patterns; b) Rayleigh number in the range 1250-1500. Stationary solutions
are displayed at the Ra number, which is highlighted by the vertical line. The arrows tag the branch points
corresponding to the disclosed patterns. Two additional vertical lines highlight the Ra = 1300 and Ra = 1400
numbers at which time dependent solutions are found. These are displayed as a time series projected on the
coefficient space (for a description see the text and [1]).

ratio has a stagnant lid at the surface. Results in this figure are obtained with different order expansions. At
low R number expansions (L×M = 47× 42) are sufficient while for higher Ra numbers they are increased up
to (L×M = 61× 44) and even to (L×M = 101× 44).

The time dependent solutions reported in Figures 9 and 10 in many respects resemble those described for
the Kuramoto-Sivashinsky (KS) equation [21, 35] in the presence of the O(2) symmetry, which also report
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the presence of traveling waves and heteroclinic cycles. The KS equation is proposed in order to describe
thermal diffusive instabilities in flame fronts [57], and while apparently this setting is rather different to ours,
the similitude between solutions suggest that the abrupt changes in the viscosity could define a similar kind of
front to those observed in flame propagation phenomena. On the other hand, similar solutions have been found
in 3D convection with constant viscosity in the presence of the O(2) symmetry [39, 19], thus confirming the
determining role of the symmetry in the dynamics.
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Figure 10: (Color online). Bifurcation diagrams as a function of the Rayleigh number for a fluid with viscosity
dependent on temperature (b = 10, a = 0.1) at Γ = 7.4. The dashed branches correspond to stationary unstable
solutions, while solid branches correspond to stationary stable ones. The gray lines stand for spatial patterns
with period 2 while the black ones are for period 3 patterns. a) Rayleigh number in the range 700-1800.
Stationary solutions are displayed at the Ra number, which is highlighted by the vertical line. The arrows tag
the branch points corresponding to the disclosed patterns; b) Rayleigh number in the range 1800-2500. Vertical
lines highlight the Ra numbers at which time dependent solutions are found. These are 2210, 2300, 2350 and
2400. These are displayed as a time series projected on the coefficients space (for a description see the text and
[1]).
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6 Conclusions

This article addresses the study of a convection problem with temperature-dependent viscosity in the presence
of the O(2) symmetry. In particular, the considered viscosity law represents a viscosity transition at a certain
temperature interval around a temperature of transition. This is a problem of great interest for its many
applications in geophysical and industrial flows and in this work the focus is on exploring the impact of symmetry
on the solutions displayed by system.

Our results report the influence on parameters a and b of the viscosity law on the morphology of the plumes
at a low aspect ratio (Γ = 3.4). It is shown that if the temperature of transition is well above the instability
threshold of a fluid with constant viscosity ν0, i.e, b is large, plumes tend to be thicker and show spout-like
shapes. Increasing the Ra number induces their evolution towards balloon-shaped plumes, and this effect is
more pronounced for high viscosity contrasts (small a). At low b values plumes are thinner, and the head of the
plume tends to spread in a mushroom-like shape in the upper part of the fluid.

We explore bifurcations both for a fixed Ra number as a function of the aspect ratio, and bifurcations at
three fixed aspect ratios as a function of the Ra number. No stagnant lid regime is observed in any of the
physical conditions analyzed. Among the stationary solutions obtained along the bifurcation branches, one
of the more interesting stable patterns consists of the non-uniformly distributed plumes that break symmetry
along their vertical axis.

We also find that, for the higher Rayleigh numbers explored, at a high aspect ratio several rich dynamics
appear. As already reported in classical convection problems, we find dynamical phenomena fundamentally
related to the presence of symmetry, such as traveling waves, oscillating solutions in the neighborhood of
heteroclinic connections and chaotic regimes characterized by “phase” drifts along the horizontal direction
linked to the SO(2) symmetry.
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We explore the instabilities developed in a fluid in which viscosity depends on
temperature. In particular, we consider a dependency that models a very viscous
(and thus rather rigid) lithosphere over a convecting mantle. To this end, we study
a 2D convection problem in which viscosity depends on temperature by abruptly
changing its value by a factor of 400 within a narrow temperature gap. We conduct a
study which combines bifurcation analysis and time-dependent simulations. Solutions
such as limit cycles are found that are fundamentally related to the presence of
symmetry. Spontaneous plate-like behaviors that rapidly evolve towards a stagnant lid
regime emerge sporadically through abrupt bursts during these cycles. The plate-like
evolution alternates motions towards either the right or the left, thereby introducing
temporary asymmetries on the convecting styles. Further time-dependent regimes
with stagnant and plate-like lids are found and described. C© 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4850296]

I. INTRODUCTION

Rayleigh-Bénard convection is the classic example of thermal convection.1 In these systems,
under certain critical conditions, small fluctuations lead to massive reorganization of the convective
motions.2–5 This is a characteristic phenomenon of open systems that transfer energy and that are
modelled by nonlinear equations.

The internal energy of the planetary interiors is dissipated by convective processes, thus con-
vection plays a crucial role in the evolution of the planet. Convective styles in planetary interiors
are different from Rayleigh-Bénard convection. For instance, plate tectonics, which is distinctive
of the Earth,6 is the surface manifestation of convection in the Earth’s mantle. Other bodies in the
solar system, such as the Moon, Venus or Mars do not exhibit plate tectonics and present other
convection expressions with a stagnant lithosphere.7, 8 Different physical justifications exist for the
diverse types of convection: layered convection, for instance, is due to endothermic phase changes
in the minerals that constitute the mantle interior.9 The mantle is compressible due to changes in
density, which increases towards the Earth interior. Numerical analysis of compressible convection
indicates that density stratification has a stabilizing effect,10 produces upwelling plumes weaker than
those downwelling and influences the thermal boundary layer.11 The dependence of conductivity
on temperature introduces new nonlinearities into the heat equation, which may lead to diverse
dynamics.12 When conductivity decreases with temperature, convection becomes more chaotic and
time-dependent.13, 14 Thermal conductivity variation has generally been less studied than that of
viscosity, as the latter is much stronger in the Earth’s mantle. Large viscosity contrasts in fluids
with temperature-dependent viscosity lead to stagnant lid convection.15, 16 Regarding the subduction
initiation, numerical results17–20 suggest that this is only possible if the stiff upper layers of the
lithosphere are weakened by brittle fracture. Several mechanisms have been proposed for driving the
motion of the lithospheric plates. Forsyth and Uyeda,21 for instance, conclude that plate-like motion

1070-6631/2014/26(1)/016602/12/$30.00 C©2014 AIP Publishing LLC26, 016602-1
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Abstract

We explore the instabilities developed in a fluid in which viscosity depends on
temperature. In particular, we consider a dependency that models a very viscous (and
thus rather rigid) lithosphere over a convecting mantle. To this end, we study a 2D
convection problem in which viscosity depends on temperature by abruptly changing
its value by a factor of 400 within a narrow temperature gap. We conduct a study
which combines bifurcation analysis and time-dependent simulations. Solutions such
as limit cycles are found that are fundamentally related to the presence of symmetry.
Spontaneous plate-like behaviors that rapidly evolve towards a stagnant lid regime
emerge sporadically through abrupt bursts during these cycles. The plate-like evolution
alternates motions towards either the right or the left, thereby introducing temporary
asymmetries on the convecting styles. Further time-dependent regimes with stagnant
and plate-like lids are found and described.

1 Introduction

Rayleigh-Bénard convection is the classic example of thermal convection [1]. In these sys-
tems, under certain critical conditions, small fluctuations lead to massive reorganization of
the convective motions [2, 3, 4, 5]. This is a characteristic phenomenon of open systems
that transfer energy and that are modelled by nonlinear equations. The internal energy of
the planetary interiors is dissipated by convective processes, thus convection plays a crucial
role in the evolution of the planet. Convective styles in planetary interiors are different
from Rayleigh-Bénard convection. For instance, plate tectonics, which is distinctive of the
Earth [6], is the surface manifestation of convection in the Earth’s mantle. Other bodies
in the solar system, such as the Moon, Venus or Mars do not exhibit plate tectonics and
present other convection expressions with a stagnant lithosphere [7, 8]. Different physical
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justifications exist for the diverse types of convection: layered convection, for instance, is
due to endothermic phase changes in the minerals that constitute the mantle interior [9].
The mantle is compressible due to changes in density, which increases towards the Earth
interior. Numerical analysis of compressible convection indicates that density stratifica-
tion has a stabilizing effect [10], produces upwelling plumes weaker than those downwelling
and influences the thermal boundary layer [11] . The dependence of conductivity on tem-
perature introduces new nonlinearities into the heat equation, which may lead to diverse
dynamics [12]. When conductivity decreases with temperature, convection becomes more
chaotic and time-dependent [13, 14]. Thermal conductivity variation has generally been
less studied than that of viscosity, as the latter is much stronger in the Earth’s mantle.
Large viscosity contrasts in fluids with temperature-dependent viscosity lead to stagnant lid
convection [15, 16]. Regarding the subduction initiation, numerical results [17, 18, 19, 20]
suggest that this is only possible if the stiff upper layers of the lithosphere are weakened
by brittle fracture. Several mechanisms have been proposed for driving the motion of the
lithospheric plates. Forsyth and Uyeda [21], for instance, conclude that plate-like motion
is produced by the sinking slab that pulls the plate in the subduction process due to an
excess of lithosphere density.

Finding the impact of the different physical properties present in the mantle on its
convection styles is an important goal of research into planetary interiors. In this context,
our focus is on examining the instabilities found in a 2D fluid in the presence of the
O(2) symmetry which contemplates a phase transition similar to a melting-solidification
processes. In particular, we consider a highly viscous layer (lithosphere) over a fluid mantle
which is modeled with a viscosity that changes abruptly by a factor of 400, in a narrow
temperature gap at which magma melts. In phase transitions, other fluid properties in
addition to viscosity may change abruptly, such as density or thermal diffusivity. However,
in this study we confine ourselves solely to the effects due to the variability of viscosity,
since consideration of the effect of simultaneous variations on all the properties prevents a
focused understanding of the exact role played by each one of these properties. Viscosity is
a measure of fluid resistance to gradual deformation, and in this sense highly viscous fluids
are more likely to behave rigidly when compared to less viscous fluids. When examining
the proposed transition with temperature, we focus on the global fluid motion when some
parts of this motion tend to be more rigid than others. By disregarding the variations on
density in this transition, we move away from instabilities caused by abrupt density changes
such as the Rayleigh Taylor instability, in which a denser fluid over a lighter one tends to
penetrate it by forming a fingering pattern. A recent article by M. Ulvrová et al. [22]
deals with a problem similar to the one we address here, but takes into account variations
in both density and viscosity. Thermal conductivity effects are related to the relative
importance of heat advection versus diffusion. Diffusive effects are therefore important at
large conductivity, while heat advection by fluid particles is dominant at low conductivity.
The contrasts arising from these variations are beyond the scope of our work and are thus
disregarded herein.
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In our setting we show that convective processes exist which include plate-like motions
that alternate in time with stagnant-lid regimes. Some of these transitions include bursts
in which the solution releases energy to accommodate different spatial patterns. These
solutions are mathematically related to limit cycles, which are persistent solutions in the
presence of the O(2) symmetry [23, 24, 25] which is also found in this problem. There
exist numerous novel dynamical phenomena in fluids that are fundamentally related to the
presence of symmetries [26]: these include rotating waves [27], modulated waves [23, 28]
and stable heteroclinic cycles [23, 24, 25]. The SO(2) symmetry is present in the problem
under consideration, because the equations are invariant under translations and periodic
boundary conditions do not break this invariance. Additionally, if the reflection symmetry
exists, the full group of symmetry is the O(2) group.

The impact of the symmetry on the solutions displayed in convection problems with
temperature-dependent viscosity has been addressed in [29, 30], where a 2D physical set-up
similar to ours is analyzed. The viscosity law considered in this work is similar to the one
studied in [30], the main difference being that the viscosity change in our current setting is
achieved within a narrower temperature gap. Our problem is idealized in terms of realistic
geophysical flows occurring in the Earth’s interior, as these are 3D flows moving in spherical
shells [31, 32]. Under these conditions, the symmetry present in the problem is formed by
all the orientation, preserving rigid motions of R3 that fix the origin, which is the SO(3)
group [33, 34, 35]. The effects of the Earth’s rotation are negligible in this respect and do
not break this symmetry, as the high viscosity of the mantle renders the Coriolis number
insignificant. The link between our simplified problem and these realistic set-ups is that
the O(2) symmetry is isomorphic to the rotations along the azimuthal coordinate, which
form a closed subgroup of SO(3). Furthermore the O(2) symmetry is present in systems
with cylindrical geometry, which provide an idealized setting for volcanic conduits and
magma chambers. The results described in this paper confirm the symmetry role in the
solutions that under the physical conditions considered exhibit plate-like dynamics and
energy bursts.

The article is organized as follows. Section 2 describes the physical set-up and provides
the governing equations as well as a detailed characterization of the viscosity law. Section
3 briefly introduces the numerical methods used to obtain the solutions. The results are
presented in Section 4. Finally, Section 5 details the conclusions.

2 The physical set-up and the governing equations

We consider a convection problem in a fluid layer of thickness d placed in a 2D finite
container of size L as shown in Fig 1. The bottom plate is rigid, i.e. u = 0, and it is at
temperature T1. The upper plate is non-deformable and free slip and is at temperature T0,
where T0 = T1 −∆T and ∆T is the vertical temperature difference, which is positive, i.e,
T0 < T1. The lateral boundary conditions are periodic.
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Figure 1: Problem set-up. A 2D container of length L and depth d with periodic lateral
boundary conditions. The bottom plate (dashed line) is rigid and is at temperature T1;
the upper plate (thick line) is free slip and is at temperature T0 (T0 < T1). The viscosity
transitions versus the depth z for the conductive temperature and Ra = 50 and 150 are
depicted on the right.

The equations governing the system are expressed with magnitudes in dimensionless
form after rescaling as follows: (x′, z′) = (x, z)/d, t′ = κt/d2, u′ = du/κ, P ′ = d2P/(ρ0κν0)
, θ′ = (T − T0)/(∆T ). Here, κ is the thermal diffusivity, ρ0 is the mean density at
temperature T0 and ν0 is the reference viscosity. After rescaling the domain, Ω1 = [0, L)×
[0, d] is transformed into Ω2 = [0,Γ) × [0, 1] where Γ = L/d is the aspect ratio. The
non-dimensional equations are (after dropping the primes in the fields):

∇ · u = 0, (1)

1

Pr
(∂tu + u · ∇u) = Raθ~e3 −∇P + div

(
ν(θ)

ν0
(∇u + (∇u)T )

)
, (2)

∂tθ + u · ∇θ = ∆θ. (3)

Here, ~e3 represents the unitary vector in the vertical direction; Ra = d4αg∆T/(ν0κ) is the
Rayleigh number; g is the gravity acceleration; α the thermal expansion coefficient and
Pr = ν0/κ is the Prandtl number. Typically for rocks, Pr is very large, since they present
low thermal conductivity (approximately 10−6m2/s) and very large viscosity (of the order
1020Ns/m2) [36]. Thus, for the problem under consideration, Pr can be considered as
infinite and the left-hand side term in (2) can be made equal to zero. These equations
use the Boussinesq approximation in which the density is considered constant everywhere
except in the buoyant term of Eq. (2) where a dependence on temperature is assumed, as
follows ρ = ρ0(1−α(T −T0)). Thus, no change in the density at the melting temperature is
considered and is assumed to be small. Jointly with equations (1)-(3), the lateral periodic
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Figure 2: Viscosity law and its dependence on the Rayleigh number.

conditions are invariant under translations along the x-coordinate, which introduces the
symmetry SO(2) into the problem. The reflexion symmetry x→ −x is also present insofar
as the fields are conveniently transformed as follows: (θ, ux, uz, p)→ (θ,−ux, uz, p). In this
case, the O(2) group expresses the full symmetry of the problem.

The viscosity ν(θ) is a smooth, positive and bounded function of θ. We use a law that
represents the melting by means of an abrupt change in the viscosity at a small temperature
gap defining the melting transition. In dimensionless form, this law is,

ν(θ)

ν0
= −

(
1− a
π

)
arctan(βµ(Raθ − Rat)) +

(
1 + a

2

)
(4)

Here, the temperature at which the transition occurs is adjusted by the transition Rayleigh
Rat which in our case is Rat = 10. The choice of a positive value for Rat imposes that there
exists a viscosity transition in the interior of the fluid layer, even if Ra is very large. The
parameter β controls the abruptness of the viscosity transition on θ. Throughout this study
we take β = 100. The constant µ, fixed to µ = 0.0146, expresses fluid properties. The
presence of the Ra number in the viscosity law is uncommon among the literature dealing
with viscosity dependent on temperature. However, it expresses better what happens in
laboratory experiments in which the increment of the Ra number is performed by increasing
the temperature T1 at the lower boundary. This procedure ties the viscosity to changes in
the Rayleigh number, which is the parameter that we vary in our study. Changes in the
Ra number, as it appears in the viscosity law, necessarily imply changes in the viscosity
contrasts. This is explored in further detail. The maximum viscosity in the fluid layer is
ν0, and this is the viscosity value used to define the dimensionless Rayleigh number Ra in
Eq. (2). In practice, ν0 is a viscosity only taken by the fluid at the upper surface where
θ = 0 (i.e, at temperature T0), in the limit of large Rat and small Ra. The parameter a
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is related to the inverse of the maximum viscosity contrast and is fixed at 10−3. In the
range of Ra numbers considered in this study, we obtain viscosity contrasts of the order of
3 · 102 − 4 · 102. Figure 2 represents the viscosity law at different Ra numbers within the
range considered in this work. It is observed that as the Ra number increases the viscosity
transition occurs in a temperature gap closer to θ = 0, and therefore closer to the upper
surface. The conductive solution (i.e. uc = 0) to the problem described by equations
(1)-(3) corresponds to the linear temperature θc = −z + 1. Fig. 1 shows two viscosity
profiles as a function of the depth z for this particular temperature solution. These profiles
are obtained at the same Ra numbers as in Figure 2, i.e. Ra = 50, 150, and they confirm
that the viscosity transition occurs close to the upper surface.

A viscosity law similar to that expressed in Eq. (4) has been proposed in [22, 30]. The
study in [22] also considers a change in the density at the temperature of transition, while
in [30] the viscosity change occurs within a broader temperature gap.

3 Numerical methods

The results presented in this work are obtained by solving the basic equations and boundary
conditions with the numerical techniques reported in [29]. Our analysis is assisted by time-
dependent numerical simulations and bifurcation techniques such as branch continuation.
These schemes are briefly described below.

3.1 Stationary solutions and their stability

1 2 3 4 5 6 7 8
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Figure 3: Critical instability curves Ra(m,Γ) for a fluid layer with temperature dependent
viscosity taking µ = 0.0146, a = 0.001, Rat = 10 and β = 100.
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The simplest stationary solution to the problem described by equations (1)-(3) and
their boundary conditions is the conductive solution that satisfies uc = 0 and θc = −z +
1. This solution is stable only for a range of vertical temperature gradients that are
represented by small enough Rayleigh numbers. Beyond the critical threshold Rac, a
convective motion settles in and new structures are observed, which may be either time-
dependent or stationary. In the latter case, the stationary equations, obtained by cancelling
the time derivatives in the system (1)-(3) are satisfied by the bifurcating solutions. At
the instability threshold of the conductive state, the growing solutions are periodic and
correspond to sine or cosine eigenfunctions with wave number m. Figure 3 displays the
critical instability curves for different m values as a function of the aspect ratio. These
curves are obtained by means of a simplified linear stability analysis for the conductive
solution, as reported in [29]. At the instability threshold around Ra ∼ 55, the viscosity law
indicates (see Figure 2) that the viscosity transition takes place at the lowest temperatures
across the fluid layer, which is near the fluid surface. Thus, at this threshold the fluid
consists of a highly viscous layer over a fluid that is not so viscous and is starting its
convection.

Beyond the instability thresholds displayed in Figure 3, new branches of stationary
solutions arise that evolve with the external physical parameters. There also exist new
critical thresholds at which stability is lost, thereby giving rise to new bifurcated structures.
These stationary solutions are numerically obtained by using an iterative Newton-Raphson
method as reported in [29, 30].

The study of the stability of the stationary solutions under consideration is addressed
by means of a linear stability analysis. To this end, a field Y representing the unknown
physical magnitudes is decomposed into its stationary solution Y b and a perturbation ỹ as
follows:

Y (x, z, t) = Y b(x, z) + ỹ(x, z)eλt. (5)

The sign in the real part of the eigenvalue λ determines the stability of the solution: if
it is negative, the perturbation decays and the stationary solution is stable, while if it is
positive the perturbation grows over time and the stationary solution is unstable.

For each unknown field expression, (5) is introduced into the system (1)-(3) and the
equations are linearized in ỹ, which are assumed to be small (see [29, 30] for details).
Together with their boundary conditions, the equations define a generalized eigenvalue
problem. The unknown perturbation fields ỹ of the linear equations are approached by
means of a spectral method according to the expansion:

ỹ(x, z) =

dL/2e∑

l=1

M−1∑

m=0

bỹlmTm(z) cos((l − 1)x) +

dL/2e∑

l=2

M−1∑

m=0

cỹlmTm(z) sin((l − 1)x). (6)

In this notation, d·e represents the nearest integer towards infinity. Here, L is an odd
number as justified in [29]. 4 × L × M unknown coefficients exist that are determined
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by a collocation method in which equations and boundary conditions are imposed at the
collocation points, according to the rules detailed in [29]. Expansion orders L and M are
taken to ensure accuracy on the results: details of their values are provided in the Section
4.

3.2 Time-dependent schemes

The governing equations (1)–(3) and their boundary conditions define a time-dependent
problem for which we propose a temporal scheme based on a spectral spatial discretization
analogous to that proposed in the previous section. As before, expansion orders L and M
are such that they ensure accuracy on the results; details on their values are given in the
following section. In order to integrate in time, we use a third order multistep scheme. In
particular, we use a backward differentiation formula (BDF) that is adapted for use with a
variable time step. Details on the step adjustment are found in [29]. BDFs are a particular
case of multistep formulas which are implicit. In [29], it is reported that instead of solving
the fully implicit scheme, a semi-implicit scheme is able to provide results with a similar
accuracy and fewer CPU time requirements, and this is the method we employ to obtain
the time-dependent solutions.

4 Results and discussion

Our study is focused on the solutions displayed by this system at a fixed aspect ratio
Γ = 2.166. As the system is forced to transport more energy by increasing the Ra number,
the conductive solution becomes unstable, and new convective solutions are observed. The
bifurcation point for this primary event occurs at Ra ∼ 55. Furthermore, beyond this point
a sequence of bifurcations occur when Ra increases, which is described below.

Figures 4 and 5 show the bifurcating branches captured at different Ra ranges. In
the diagrams, the horizontal axis represents the Ra number, while on the vertical axis the
system state is represented by a scalar given by the sum of two coefficients in the expansion
(6) of a stationary solution:

|bθ24|+ |bθ34|. (7)

This amplitude is related to the energy in the temperature field. The horizontal line at 0
corresponds to the conductive solution which is always a stationary solution of the system.
In these figures, stable branches are represented by solid lines, while unstable branches
are shown with dashed lines. The lines in black correspond to solutions with periodicity
m = 2 and the lines in gray are for those with m = 1. The validity of these bifurcation
diagrams is decided by ensuring that for successive order expansions the amplitude values
displayed on the vertical axis of the bifurcation diagrams are preserved. Most of the results
reported in these diagrams are obtained with expansions L×M = 47× 50 although these
are increased up to L×M = 50× 100 when required (especially at high Ra numbers).
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Figure 4: Bifurcation diagram at Γ = 2.166 for the fluid under consideration in the range
Ra ∈ [45, 143]. This is obtained by representing the amplitude |bθ24| + |bθ34| versus the Ra
number. Solid lines represent stable branches, while dashed lines stand for the unstable
ones.
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Figure 5: Bifurcation diagram at Γ = 2.166 for the fluid under consideration in the range
Ra ∈ [143, 162]. This is obtained by representing the amplitude |bθ24|+ |bθ34| versus the Ra
number. Solid lines represent stable branches, while dashed lines stand for the unstable
ones. Shaded regions limit the parameter values Ra, between which the time-dependent
solutions described in Figure 7 are observed.
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Figure 6: Representation of ux versus z for the stationary one plume pattern obtained at
Γ = 2.166 and Ra = 115. The horizontal line highlights the stagnant upper lid.

Figure 4 is focused on the Ra interval Ra ∈ [45, 143] and reveals that several stable
solutions are possible under the same physical conditions. The patterns observed in the
physical variables, temperature and velocity, are plotted at different Rayleigh numbers. For
instance, at Ra = 115 the solution for the solid grey branch is displayed, which corresponds
to a pattern with one plume. Two white lines indicate the temperature contours at which
the viscosity mostly decay. Figure 6 displays the horizontal component of the velocity
versus the z-coordinate for this solution. The highlighted thin layer at the upper part
confirms the existence of a stagnant lid at the surface. At Ra = 87 a two-plume solution in
an unstable branch is represented. Several pitchfork bifurcations occur from which stable
branches emerge. At Ra = 115 the pattern of a two-plume stable solution is shown; as in
the one-plume solution, it has a stagnant upper surface. This stable branch undergoes a
Hopf bifurcation at Ra ∼ 123, after which time-dependent solutions are found. A projection
on the expansion coefficients space of this time-dependent solution is displayed at Ra ∼
123. This solution consists of two plumes each slightly oscillating around their axis below
a stagnant lid. After the Hopf bifurcation, the unstable branch undergoes a pitchfork
bifurcation at Ra ∼ 130 and a stable branch emerges. This branch merges again with the
unstable branch at Ra ∼ 140. The crossing of branches at Ra ∼ 135 is an effect of the
projection taken and does not represent any transcritical bifurcation.

When the system is forced to transfer higher energy rates, further time-dependent
solutions are observed. This is confirmed in Figure 5, which describes a bifurcation diagram
similar to the previous one but at higher Rayleigh numbers Ra ∈ [143, 162]. The black
branch bifurcates through a Hopf bifurcation at Ra ∼ 144 towards time-dependent regimes
that coexist with the grey stable branch. Hopf bifurcations also occur for a different black
stable branch at Ra ∼ 149.3, as well as for the grey solid branch at Ra ∼ 158. Figure 5
shows several stationary solutions: at Ra ∼ 148 it displays a two-plume structure obtained
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Figure 7: Time-dependent regime of a two-plume pattern at Γ = 2.166 and Ra = 148 in the
Ra range highlighted with the shaded region in Figure 5. a) Time series of the horizontal
component of the velocity at the surface point (z = 1, x = Γ/2) on Ra = 148. Two zooms
are represented for the bursts at around times t ∼ 4.7 and t ∼ 5.6; b) spatial patterns
during the bursts at times t = 4.6828 and t = 5.5805 and in the quiescent state at t = 5.15.
c) the horizontal component of the velocity ux versus the z-coordinate at fixed x = Γ/3 at
times t = 4.6828, t = 5.15 and t = 5.5805. The horizontal line highlights the moving upper
lid that switches with a stagnant lid. 12
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over the marked branch. This solution coexists with a time-dependent solution observed
over the entire shaded region, of which we provide a projection of the time series obtained
at Ra = 148, which is explained in detail below. An unstable stationary solution over
this branch is displayed at Ra ∼ 155. The pattern is asymmetric, with the plumes more
prominent outwards. At this Ra number, the structure of a stationary solution on the
stable branch also exhibits asymmetry, but with the heads more prominent inwards. All
the stationary solutions have a stagnant upper surface.

We next describe the temporal evolution observed in the shaded region of Figure 5. A
summary of what is obtained at Ra = 148 is given in Figure 7. The system evolves as
a limit cycle in a type of evolution similar to that close to heteroclinic cycles, a typical
object of systems with the O(2) symmetry [23, 25]. Over time, the system stays close to
two quiescent states, which are distinguished in Figure 7(a) by the zero upper velocity for
long periods. These states are interrupted by bursts in which energy at the upper surface
is abruptly released. One of the two quiescent states is represented in the center panel of
Figure 7(b). In these almost stationary positions, the system presents two plumes that
oscillate very slightly and have a stagnant lid at the upper surface. The two states are
distinguished by the fact that the plumes are slightly shifted along the horizontal direction.
Figure 7(c) represents the horizontal component of the velocity ux versus the depth z for
a quiescent state at time t = 0.14482. In the center panel one may observe the stagnant
upper lid. The quasi-stationary regimes are connected by rapidly evolving transitions
which release the energy very rapidly. The solution during these crises has the interesting
characteristic that in these episodes it consists of ”plate-like” convective styles. By ”plate-
like” motion we refer to the fact that the stagnant lid at the upper surface drifts alternately
towards the right or the left as a block. The first and third panels in Figure 7(c) show a
moving upper layer by displaying the horizontal component of the velocity ux versus the
depth z. A thin lid is observed which moves like a rigid body without internal shear either
to the right or to the left. We have verified that variations of the velocity within this thin
layer are below 0.05%, and for this reason it has the appearance of a moving plate. In
these short time intervals (short when compared to the duration of the quiescent states),
a meandering jet develops simultaneously below the drifting surface, in which sinking and
upwards currents are observable (see Figure 7(b)).

It is clear that the lateral boundary conditions (i.e. the symmetry) are important
for this behaviour because they allow upper drift motions. Moreover, the shifted inactive
states between which the alternancy appears are possible only in this scenario. On the
other hand, in a recent work by Ulvrová et al. [22] the authors study a law similar to
ours, although symmetry effects are absent and this type of transition is not reported.
Nevertheless, it should be noted that symmetry is not a sufficient condition for this kind of
behavior: for instance, previous results discussed in [30], also in the presence of the O(2)
symmetry, and in a similar setting to ours, make no reference to ”plate-like” convection
nor stagnant lids, although symmetries do exert an influence on the described solutions.
The main difference between the setting considered in this work and that presented in
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Figure 8: Time-dependent regime of a one-plume pattern at Γ = 2.166 and Ra = 160. a)
Time series of the horizontal component of the velocity at the surface point (z = 1, x = Γ/2)
at Ra = 160; b) spatial patterns at times t = 0.14474 and t = 0.14482 and t = 0.145.; c)
the horizontal component of the velocity ux versus the z-coordinate at fixed x = Γ/3 at
times t = 0.14474, t = 0.14482 and t = 0.145. The horizontal line highlights the moving
upper lid.
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[30] is that the transition of the viscosity with temperature is less abrupt than in our
study. Furthermore results reported in [29], also in the presence of the O(2) symmetry and
viscosity according to exponential law, indicate the existence of a stagnant lid, although
no impact of the symmetry on the time evolution is found.

The bursting solutions obtained in this study are justified in the framework of the
symmetry presence, but this does not imply that episodic solutions cannot be obtained in
other settings in which the symmetry is absent. For instance, in the numerical work by [37],
catastrophic events in Earth’s mantle are reported. However, these bursting solutions are
rather different to ours insofar as they do not connect almost quasi-stationary states and
the solutions are not linked to any plate-like behaviour. The work by [6] is connected to
episodic plate reorganizations, although the authors obtain time series in which transitions
are not so dramatic as ours. However, in their problem they consider a square box with
periodic boundary conditions, so they have the symmetry O(2)×O(2). Unfortunately, they
provide no discussion on the impact of the underlying symmetry on their solutions.

Our simulations indicate that the solution described in Fig. 7 becomes non-attractive
at Ra ∼ 149.5. At this point, an initial data starting near this regime evolves towards a
periodic solution, a projection of which is shown in Figure 5. This motion consists of slightly
asymmetrical plumes, each one rapidly vibrating around its central vertical axis. This is a
time-dependent solution in which the surface fluid remains stagnant. At Ra ∼ 160, Figure
5 shows the projection on the coefficient space of a time series obtained for the asymptotic
time-dependent regime of one plume. Figure 8 shows the time evolution in detail. The
system evolves in a periodic motion in which the upper surface drifts alternately towards the
right and the left, which is confirmed by a time series of the horizontal velocity component
at the surface. Long quiescent states between the drift motions are no longer observed,
only a continuously oscillating motion. In Figure 8(b), snapshots of the temperature and
velocity fields obtained at times t = 0.14474, 0.14482, 0.145 show the plate-like motion.
Figure 8(c) enforces this vision by displaying the horizontal component of the velocity ux
versus the depth z at the same selected times. A thin upper lid which moves consistently
is observed. As in the previously described plate motion, a meandering jet develops below
the drifting surface in which sinking and upwards currents are observable (see Figure 8(b)).
These time-dependent solutions are obtained with expansions L×M = 47× 50.

5 Conclusions

In this paper we address the subject of a convecting fluid in which viscosity depends on
temperature. We examine a dependency which models an abrupt change in the viscosity
in a gap around a temperature of transition. We explore the space of solutions at a fixed
aspect ratio by means of bifurcation diagrams and time-dependent numerical simulations.
We find time-dependent convection in which the symmetry plays an important role. In
particular, we describe limit cycles and time periodic solutions which are similar to others
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found in several contexts in the literature (see [23, 24, 25]) in the presence of the O(2)
symmetry.

The time evolution during the limit cycles presents two peculiarities: first of all, they are
bursting solutions that release energy abruptly in time and secondly plate-like convection
is observed during the bursts. Additionally, time-periodic solutions are found that have a
similar plate-like dynamic with a smoother time evolution. No plate-like dynamics have
hitherto been observed in this type of convection problem. For viscosity dependencies
according to the Arrhenius law, or its approach by means of an exponential law, no temporal
transitions between stagnant lids and drifting lids have been reported. Recent studies by
Ulvrová et al. [22], who use a law similar to ours, do not report this type of transitions
either, although symmetry effects are not considered in their study.

Forsyth and Uyeda [21] propose that plate-like motion is produced by sinking slabs that
pull the plates in the subduction process. The results reported in our study are obtained for
constant density within the Boussinesq approximation, and provide convection examples
of moving plates that coexist with subsurface upwards and downwards meandering jets,
but without a proper subduction. Obviously, these examples do not rule out the existence
of subduction in the Earth, but rather propose a role played by the symmetry which
can be particularly illustrative for understanding convective styles of the Earth prior to
subduction, or that of other planetary bodies.
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I. INTRODUCTION

Rotating Rayleigh-Bénard convection in a circular cylinder
is a classical canonical system that has been receiving much
additional attention recently due to the availability of new
modern experimental facilities and significant advances in
its numerical simulation [1]. For the most part, studies have
focused on Prandtl numbers (the ratio of thermal to viscous
time scales of the problem) of order 10 and smaller, motivated
primarily by astrophysical interests [2]. Large Prandtl number
systems are also of much interest, particularly when the
working fluids are various alcohols, silicone oils, and exotic
gases under high pressure. For this reason it is desirable
to access high-Prandtl number regimes both in laboratory
experiments and in numerical or theoretical models in order
to gain insight into some of the physical processes involved.
Conducting laboratory experiments over a range of large
Prandtl numbers requires the choice of appropriate fluids.
Aqueous mixtures of glycerine are one such choice which
has been used in many fluid mechanical settings [3], as well as
in heat-transfer and chemical kinetics applications. However,
these have a temperature-dependent viscosity which may need
to be accounted for.

In rotating convection, recent experiments [4] have reported
significant qualitative differences between the states found for
Prandtl numbers bigger than one and smaller than one. In

*jmlopez@asu.edu

Ref. [5] heat flux enhancements due to rotation were inves-
tigated, and it was noted that there is a lack of experimental
and numerical studies that address Prandtl number effects for
rotating convection. For Prandtl numbers greater than 100,
there are few studies in rotating convection. There exist some
theoretical studies in the limit of infinite Prandtl number [6–8],
but these neglect two aspects of rotating convection which can
be dominant, especially in a realistic physical setting, namely,
confinement and centrifugal buoyancy [9–14]. Experiments
are often designed to operate in parameter regimes where the
Froude number Fr is small so that centrifugal effects can be
neglected [15]. Neglecting centrifugal buoyancy in a large
Prandtl number setting can be especially problematic since
reaching a large Prandtl number requires a large viscosity fluid,
such as highly concentrated aqueous mixtures of glycerine.
As the Coriolis number (ratio of viscous time to system
rotation period) also depends on the viscosity, in order to keep
this number fixed while increasing the Prandtl number, the
rotation of the system must be increased. This increment also
augments the Froude number, which depends, quadratically,
on the rotation rate. So, for small Prandtl numbers the Froude
number is small and generally negligible, but for large Prandtl
numbers the Froude number becomes large enough to strongly
influence the dynamics.

In this paper, we conduct numerical simulations in a rotating
cylinder of radius-to-depth ratio equal to 4 with fluids covering
a large range of Prandtl and Froude numbers. The precise
parameter regimes are described below, together with the
description of the governing equations and their numerical

1539-3755/2014/89(1)/013019(8) 013019-1 ©2014 American Physical Society
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Abstract

Thermal convection in a rotating cylinder with a radius-to-height aspect ratio of Γ = 4 for fluids

with large Prandtl number is studied numerically. Centrifugal buoyancy effects are investigated in

a regime where the Coriolis force is relatively large and the onset of thermal convection is in the

so-called wall modes regime, where pairs of hot and cold thermal plumes ascend and descend in

the cylinder sidewall boundary layer, forming an essentially one-dimensional pattern characterized

by the number of hot/cold plume pairs. In our numerical study, we use the physical parameters

corresponding to aqueous mixtures of glycerine with mass concentration in the range of 60–90%

glycerine and a Rayleigh number range that extends from the threshold for wall modes up to values

where the bulk fluid region is also convecting. The study shows that for the range of Rayleigh

numbers considered, the local variations in viscosity due to temperature variation in the flow are

negligible. However the mean viscosity, which varies faster than exponentially with variations in

the percentage of glycerine, leads to a faster than exponential increase in the Froude number for a

fixed Coriolis force, and hence an enhancement of the centrifugal buoyancy effects with significant

dynamical consequences which are detailed.
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I. INTRODUCTION

Rotating Rayleigh-Bénard convection in a circular cylinder is a classical canonical system

that has been receiving much additional attention recently due to the availability of new

modern experimental facilities and significant advances in its numerical simulation [1]. For

the most part, studies have focused on Prandtl numbers (the ratio of thermal to viscous time

scales of the problem) of order 10 and smaller, motivated primarily by astrophysical interests

[2]. Large Prandtl number systems are also of much interest, particularly when the working

fluids are various alcohols, silcone oils and exotic gases under high pressure. For this reason

it is desirable to access high-Prandtl number regimes both in laboratory experiments and in

numerical or theoretical models in order to gain insight into some of the physical processes

involved. Conducting laboratory experiments over a range of large Prandtl numbers requires

the choice of appropriate fluids. Aqueous mixtures of glycerine are one such choice which

has been used in many fluid mechanical settings [3], as well as in heat-transfer and chemical

kinetics applications. However these have a temperature dependent viscosity which may

need to be accounted for.

In rotating convection, recent experiments [4] have reported significant qualitative dif-

ferences between the states found for Prandtl numbers bigger than one and smaller than

one. In [5], heat flux enhancements due to rotation were investigated, and it was noted that

there is a lack of experimental and numerical studies that address Prandtl number effects for

rotating convection. For Prandtl numbers greater than 100, there are few studies in rotating

convection. There exist some theoretical studies in the limit of infinite Prandtl number [6–8],

but these neglect two aspects of rotating convection which can be dominant, especially in a

realistic physical setting, namely confinement and centrifugal buoyancy [9–14]. Experiments

are often designed to operate in parameter regimes where the Froude number, Fr , is small

so that centrifugal effects can be neglected [15]. Neglecting centrifugal buoyancy in a large

Prandtl number setting can be especially problematic since reaching a large Prandtl number

requires a large viscosity fluid, such as highly concentrated aqueous mixtures of glycerine.

As the Coriolis number (ratio of viscous time to system rotation period) also depends on

the viscosity, in order to keep this number fixed whilst increasing the Prandtl number, the

rotation of the system must be increased. This increment also augments the Froude num-

ber which depends, quadratically, on the rotation rate. So, for small Prandtl numbers the
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Froude number is small and generally negligible, but for large Prandtl numbers the Froude

number becomes large enough to strongly influence the dynamics.

In this paper, we conduct numerical simulations in a rotating cylinder of radius-to-depth

ratio equal to 4 with fluids covering a large range of Prandtl and Froude numbers. The

precise parameter regimes are described below, together with the description of the governing

equations and their numerical resolution. We find that for moderate Rayleigh numbers (up

to and a little beyond where the bulk begins to convect), the local variations in viscosity

due to temperature variations in the flow are negligible, especially when compared to the

centrifugal effects.

II. THE PHYSICAL SET-UP, THE GOVERNING EQUATIONS AND THE NU-

MERICAL SCHEME

Consider the flow in a circular cylinder of radius r0 and depth d, rotating at a constant

rate ω rad/s. The top and bottom endwalls are maintained at constant temperatures T0 −
0.5∆T and T0 + 0.5∆T , respectively, where T0 is the reference temperature and ∆T is the

temperature difference between the endwalls. The sidewall is assumed to be insulating. The

governing equations are written in the rotating frame of reference, using the Boussinesq

approximation in which all fluid properties are considered constant, except for the density

in the gravitational and centrifugal buoyancy terms. Using d as the length scale, d2/κ as

the time scale, ν2ρ0/d
2 as the pressure scale (ρ0 is the density at temperature T0) and ∆T

as the temperature scale, the non-dimensional governing equations are:

(∂t + u · ∇)u = −∇p+ σRaT ẑ + 2σΩu× ẑ − σFrRa

Γ
Tr + σ∇2u, (1)

(∂t + u · ∇)T = ∇2T, ∇ · u = 0, (2)

where the non-dimensional temperature is T = (Tphys − T0)/∆T , u is the velocity field in

the rotating frame, (u, v, w) are the components of u in cylindrical coordinates (r, θ, z), p

is the kinematic pressure (including gravitational and centrifugal contributions), ẑ the unit

vector in the vertical direction z, and r is the radial vector in cylindrical coordinates. There

4
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are five non-dimensional parameters:

Rayleigh number Ra = αgd3∆T/κν0,

Coriolis number Ω = ωd2/ν0,

Froude number Fr = ω2r0/g,

Prandtl number σ = ν0/κ,

aspect ratio Γ = r0/d,

(3)

where α is the coefficient of volume expansion, g is the gravitational acceleration, κ is the

thermal diffusivity, and ν0 is the kinematic viscosity at temperature T0. The boundary

conditions for u and T are:

r = Γ : u = v = w = 0, Tr = 0, (4)

z = ±1/2 : u = v = w = 0, T = ∓1/2. (5)

The dimensionless form of the temperature-dependent density used in (1) is:

ρ(T ) = ρ0(1− αT ). (6)

The validity of the Boussinesq approximation requires α∆T � 1. Expressing this value in

terms of the non-dimensional parameters of the problem gives

α∆T = RaFr/Ω2σΓ. (7)

For the range of parameters considered in this study, α∆T is indeed small (< 10−3). This

criterion is often quoted as being a sufficient criterion to validate the Boussinesq approx-

imation, although [16, 17] introduced additional conditions under which the Boussinesq

approximation can be applied. These include certain factors related to the temperature

dependence of the material properties which should be smaller than a certain tolerance for

a required level of accuracy. For the parameter regimes considered in this study, since ∆T

is small, these requirements are also satisfied.

In our numerical experiments, we have considered glycerine-water mixtures. The aspect

ratio is fixed to Γ = 4 and the Coriolis number to Ω = 625, corresponding to values used

in previous studies where onset was dominated by wall modes [18, 19]. Figure 1 shows the

variations of σ and Fr for aqueous mixtures of glycerine at 22.4◦C. The density and dynamic

5
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FIG. 1: Variations of σ and Fr for aqueous mixtures of glycerine at 22.4◦C.

viscosity of the aqueous glycerine mixtures, required to calculate σ and Fr , have been ob-

tained from [20]. We have focused our attention on the concentration range 60–90%, as we

are interested in examining centrifugal effects and for glycerine concentrations less than 60%,

Fr < 0.01, and the effects of this parameter are negligible. For the range of glycerine concen-

trations considered, the Prandtl number increases by about one order of magnitude while the

Froude number increases by almost two orders of magnitude. Temperature-dependent vis-

cosity effects are negligible in the parameter range analyzed in this study. For completeness,

these are briefly discussed in the Appendix A, which also details how the governing equations

change due to temperature-dependent viscosity, and how these are solved numerically.

The governing equations have been solved using the second-order time-splitting method

proposed in [21] combined with a pseudo-spectral method for the spatial discretization, uti-

lizing a Galerkin–Fourier expansion in the azimuthal coordinate θ and Chebyshev collocation

in x = r/Γ and y = 2z of the form

F (r, θ, z) =
L∑

l=0

N∑

n=0

M∑

m=−M
al,n,mΞl(x)Ξn(y)eimθ. (8)

The velocity components, temperature and pressure are the real or imaginary parts of F .

The radial dependence of the variables is approximated by Chebyshev expansions with

appropriate parities of their azimuthal Fourier components [22]. To avoid including the

origin in the collocation mesh, an odd number of Gauss–Lobatto points in r is used and

the equations are solved only in the interval r ∈ (0, Γ ]. Following [23], we have used the

combinations u+ = u+ iv and u− = u− iv in order to decouple the linear diffusion terms in

6
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the momentum equations. For each Fourier mode, the resulting Helmholtz equations for T ,

w, u+ and u− have been solved using a diagonalization technique in the two coordinates r

and z. The imposed parity of the Fourier modes guarantees the regularity conditions at the

origin needed to solve the Helmholtz equations [24]. Further details of the numerical code

can be found in [25]. We have used L = 48 spectral modes in r, N = 24 in z, M = 184 in θ

and a time-step dt ∈ [2.5× 10−7, 5× 10−6] thermal time units. The time-step used depends

on the Prandtl number and to a lesser extent the Froude number. When these are large,

the time-step used needs to be decreased.

III. RESULTS

The present study is focused on examining how the wall modes in rotating convection

are quenched in a regime dominated by Coriolis force and large Prandtl number. For a fixed

Coriolis number, we consider a variety of aqueous mixtures of glycerine, thus setting the

Froude and Prandtl numbers of each mixture, and increase the Rayleigh number from below

the onset of the wall modes to beyond values at which bulk convection occurs.

Our results can be characterized by the Nusselt number Nu, the ratio of the vertical heat

flux of the flow state to the vertical heat flux due solely to conduction:

Nu(r, θ, z) = −∂zT (r, θ, z). (9)

It is also useful to consider the azimuthally averaged Nusselt number given by:

Nu(r, z) = −
∫ 2π

0

∂zT (r, θ, z) dθ , (10)

and the horizontally averaged Nusselt number 〈Nu〉 at any height z, given by:

〈Nu〉(z) = −
∫ Γ

0

∫ 2π

0

∂zT (r, θ, z) rdrdθ =

∫ Γ

0

Nu(r, z) rdr. (11)

We begin by examening the effects of increasing the Prandtl number whilst ignoring the

centrifugal buoyancy (artificially setting Fr = 0), as this corresponds to a setting closer

to previous studies on Prandtl number effects and provides a case to compare with when

centrifugal buoyancy is accounted for.

We set Ra = 9 × 104, which is well above the critical Rayleigh number for the onset of

wall modes, Rac ∼ 4 × 104, when Ω = 625 and Γ = 4. In this parameter regime, the wall
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FIG. 2: Variation of the Nusselt number with σ for Ω = 625, Ra = 9× 104, Γ = 4 and Fr = 0.

modes are stable and there is no bulk convection. The wall modes are rotating waves whose

spatial structure simply precesses without change (in the rotating frame of reference), thus

leading to a time-independent Nusselt number [26]. This Rayleigh number is close to but

below the value for which bulk convection occurs. The wall mode structure is maintained

for all values of σ without any significant differences for solutions with σ > 100.

Figure 2 shows how the Nusselt number varies with σ ∈ [7, 1000]. The Nusselt number

diminishes slightly with increasing σ until σ ∼ 100 and from then on it is independent of σ.

The temperature and velocity throughout the cylinder does not vary with Prandtl number

for σ > 100. This is consistent with what is found generally in non-rotating convection, but

as we shall now see, is a result of ignoring centrifugal buoyancy effects.

Typically, in rotating convection studies, the Coriolis term is taken into account but the

Froude number is artificially set to zero, ignoring the centrifugal buoyancy term. [12, 27] have

shown that centrifugal buoyancy plays a significant dynamic role and changes the problem in

a fundamental manner. The total buoyancy force (gravitational plus centrifugal) no longer

points in the vertical direction, but now also has a radial component which varies with

radial distance from the rotation axis. This destroys the horizontal translation invariance

that is inherent in the horizontally unbounded theoretical treatments of the problem [7, 28–

32]. Furthermore, the reflection symmetry about the cylinder mid-height (the so-called

up-down symmetry) is also destroyed. Figure 1 strongly suggests that for the fixed Coriolis

number Ω = 625, one cannot ignore centrifugal buoyancy because for the glycerine mixtures

8
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considered, the corresponding Froude number is not small (0.01 . Fr . 10).

For Ra ∈ [2× 104, 9× 104], we now study the effects of Fr 6= 0. We do this by increasing

the mass concentration of glycerine in aqueous mixtures, which also increases the viscosity

of the fluid. In order to keep the Coriolis number the same for all aqueous mixtures, the

rotation rate of the cylinder ω must increase with the viscosity, i.e. the concentration of

glycerine, and hence the Froude number Fr also increases. We have considered several

glycerine concentrations. For glycerine concentration of about 60%, Fr ∼ 10−2 is small and

negligible and σ ∼ 100, and so we set the test case with which to compare the results for

larger glycerine concentrations to be Fr = 0 and σ = 100, nominally corresponding to a 60%

glycerine mixture. Figure 3 shows isotherms in a horizontal section of the cylinder at z = 0.2

for Ω = 625 and Γ = 4, for four representative cases at Ra as indicated. In the first row, we

have the nominal cases for 60% glycerine mixture with artificially set Fr = 0 and σ = 100.

In fact, with Fr = 0, there are no discernable changes in the solutions for σ > 100 over the

range of Ra considered in this paper. The other three rows in the figure are for increasing

percentages of glycerine in the mixture and are computed with the corresponding physical

values of Fr and σ, as indicated. In all simulations, we begin with the lowest value of Ra

and use as initial condition the wall mode with azimuthal wavenumber m = 20 computed for

Fr = 0, σ = 7, Γ = 4 and Ω = 625. In this parameter regime there is a large Eckhaus-stable

band of wall modes with azimuthal wavenumbers varying from about 12 to 36 [18, 19]. By

using the same initial condition for low Ra and continuing the resulting wall mode state to

higher Ra, we are able to continue the same wall mode branch for the different glycerine

concentrations.

The wall-mode structure is maintained for small values of the Froude number, it becomes

weaker at intermediate Fr and is quenched for large Fr , where axisymmetric target-like

patterns are found. As Fr increases, the precession frequency also changes, as shown in

Fig. 4. The precession of the wall modes is retrograde in all cases considered, and increases

in absolute value when Fr increases, and the increase is larger for increasing Ra. As the

percentage of glycerine is reduced, the precession frequencies ωp approach those reported

in [19], who considered the case of pure water with Fr = 0 and σ = 7. The precession

frequencies ωp reported here and in [19] correspond to the frequencies obtained via FFT

of the temperature at a fixed point; the rotation frequency of the pattern, ωpattern, differs

from ωp by a factor of m (the azimuthal wavenumber m = 20 in the case considered here):

9
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FIG. 3: (Color online) Isotherms at height z = 0.2 for Ω = 625, Γ = 4 and Ra as indicated for

σ = 100 ignoring centrifugal buoyancy (top row with Fr = 0), and with the values of Fr and σ

corresponding to aqueous mixtures of glycerine at 70% (second row), 80% (third row) and 85%

(bottom row) of mass at 22.4◦C. There are 10 positive (red/dark gray) and 10 negative (yellow/light

gray) isotherms in the range T ∈ [−0.5, 0.5]. 10
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FIG. 4: Variation of the precession frequency of the wall modes with glycerine concentration for

various Ra with Ω = 625 and Γ = 4; the values of σ and Fr used are for the corresponding glycerine

mixture at 22.4◦C.

ωpattern = ωp/m.

Figure 5(a) shows how 〈Nu〉 − 1, computed at the top endwall z = 0.5, varies with the

glycerine concentration for various Ra ≤ 9×104, for which the Nusselt number remains time

independent. Figures 5(b) and (c) show the same result but as functions of the corresponding

values of Fr and σ. The minima in the curves correspond to the glycerine concentrations

(and Fr and σ) at which the wall modes are quenched for the given Ra. To the left of these

minima (light gray shaded area), wall modes are present, and to the right (dark gray shaded

area) the wall modes are not present and the centrifugal buoyancy driven target patterns

are observed. For low glycerine concentrations, Fr is small and as the concentration is

increased the centrifugal buoyancy strength increases, acting most strongly at large radii

where the wall mode plumes reside; it acts to diminish the strength of the wall modes so

that they transport less heat. At the same time, the centrifugal buoyancy is also driving an

axisymmetric large scale meridional circulation that is enhancing the heat transport, and is

responsible for the rapid increase in the Nusselt number at large glycerine concentrations

where Fr is also large. Above Ra = 9× 104, the onset of bulk convection is observed.

Figure 6 is the continuation of Fig. 3 to higher Rayleigh numbers. As expected, for

fixed glycerine concentration (or fixed Fr and σ), as the Rayleigh number is increased the

bulk interior fluid starts to convect. On the other hand, for Ra fixed, an increase in the

glycerine concentration enhances the centrifugal buoyancy, and not only are the wall modes
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(a)

(b)

(c)

FIG. 5: (Color online) Nusselt number versus (a) glycerine concentration, (b) Froude number and

(c) Prandtl number for Ω = 625 and Γ = 4 and various Ra as indicated. The values of σ and Fr

used are for the corresponding glycerine mixture at 22.4◦C.

quenched but so too is the bulk convection. When there is bulk convection at low glycerine

concentrations, the time evolution of the patterns is of Küppers-Lortz type [33], with rolls

changing their orientation in time (see [13, 19] for similar simulations with Fr = 0). However,

this dynamic is destroyed for high glycerine concentrations as centrifugal buoyancy effects

12
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FIG. 6: (Color online) Isotherms at θ = 0, π/20 for Ω = 625, Γ = 4 and Ra as indicated for

σ = 100 ignoring centrifugal buoyancy (top row with Fr = 0), and with the values of Fr and σ

corresponding to aqueous mixtures of glycerine at 70% (second row), 80% (third row) and 85%

(bottom row) of mass at 22.4◦C. There are 10 positive (red/dark gray) and 10 negative (yellow/light

gray) isotherms in the range T ∈ [−0.5, 0.5]. 13
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FIG. 7: (Color online) Radial variations of the azimuthally averaged Nusselt number for Ω = 625,

Γ = 4, and various Ra, Fr and σ as indicated.

become more dominant.

Figure 7 depicts the azimuthally averaged Nusselt number Nu(r, z) defined in (10), versus

the radial distance r at the upper plate (z = 0.5). We observe that most of the heat flux

occurs in the sidewall boundary layer where either the wall mode plumes reside when Fr

is small, or the target pattern rings have the strongest circulation when Fr is large. The

Nusselt number increases with the Rayleigh number, but is always localized in the sidewall

boundary layer until Ra is increased above the onset of bulk convection. In the highest

glycerine concentration case with Fr = 0.901, for Ra = 105, just as the bulk is about to

convect, we see that there is a strong correlation between the heat flux radial distribution

and the strength of the circulation in the target pattern rings.

IV. CONCLUSIONS

This article addresses the study of rotating convection at large Prandtl numbers, focus-

ing on centrifugal buoyancy effects that are usually neglected when using the Boussinesq

approximation. The presence of the centrifugal term means that horizontal periodicity is

lost; this is a major set back for analytic and asymptotic studies, as well as numerically, as

14
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Fourier basis functions in the horizontal directions cannot be used. However, the centrifugal

buoyancy term is readily accommodated in appropriate numerical treatments, for example

using a Chebyshev basis in the radial direction.

Large Prandtl numbers are easily obtained using different concentrations of glycerine in

aqueous mixtures, making the parameter ranges investigated in this study readily accessible

in laboratory experiments. An additional advantage of using glycerine solutions is that the

range of Prandtl and Froude numbers accessible is large: one and two orders of magnitudes

respectively, for the numerical simulations reported here.

We have analyzed the flow structure in the Rayleigh number range 5 × 104 ≤ Ra ≤
1.5 × 105, i.e. from the onset of wall modes up to convection in the bulk. We have found

that the centrifugal buoyancy term has a large impact on the structure and dynamics of the

sidewall boundary layer and also on the bulk convection.

In the absence of rotation, the flow characteristics change with increasing Prandtl number,

and at about σ = 100 an asymptotic regime is reached where there are no further changes in

the flow. However in the presence of rotation, increasing σ is linked to increments in Fr and

new dynamics result. At low Ra, increasing the glycerine concentration results in the wall

modes losing angular velocity in the laboratory frame of reference (i.e. the retrograde rotation

rate increases) due to the large scale circulation induced by the centrifugal buoyancy which

eventually drives the wall modes towards target patterns with increasing Fr . For larger Ra,

the wall modes are quenched and if Fr is large enough the wall modes completely disappear.

At large Ra, bulk convection appears in most of the cell, and if Fr = 0 is artificially set in

the governing equations, the dynamics is related to the Küppers-Lortz dynamics. At higher

Fr, the dynamics change as random narrow cold plumes emerging from the top lid emerge.

These changes in the flow structure have a direct impact on the heat transfer. For small

Fr , most of the heat transport is due to the wall mode plumes. As Fr increases and the

wall modes are quenched, the heat transport is reduced, until Fr is large enough so that

the centrifugal buoyancy driven large scale circulation leading to the axisymmetric target

pattern flow is strong and accounts for the heat transport.

A major conclusion of the present study is that Fr effects cannot be ignored for rotating

convection at large Prandtl numbers. The simulations at the largest Ra numbers explored

show that the structure and dynamics of the plumes emerging from the top and bottom

endwall boundary layers are significantly altered when Fr effects are included. The dynamics

15
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are very different from the Küppers-Lortz dynamics that are observed when Fr ≈ 0. This

aspect warrants further detailed study both from the experimental and the numerical point

of view.
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APPENDIX A: TEMPERATURE-DEPENDENT VISCOSITY

The non-dimensional governing equations including temperature-dependent viscosity are:

(∂t + u · ∇)u = −∇p+ σRaT ẑ + 2σΩu× ẑ − σFrRa

Γ
Tr + σ∇ ·

[
ν

ν0
(∇u + (∇u)T )

]
,

(∂t + u · ∇)T = ∇2T, ∇ · u = 0. (A1)

The equation νC(T ) that approximates the dependence of viscosity with temperature for

glycerine-water mixtures from [34] is used. Since in our setting the temperature range is

small, we use a linear approximation for the temperature dependence of viscosity, given by

the tangent to the curve reported by [34] at the reference temperature T0. In dimensionless

form, it is given by

ν(T ) = ν0(1− γT ), (A2)

where γ is a linear rate given by

γ = ε∆T, ε = − 1

ν0

dνC
dT

∣∣∣
T=T0

. (A3)

The viscous term in (A1), σ∇ ·
[
ν(T )
ν0

(∇u + (∇u)T )
]
, that depends on the velocity, is ex-

panded in a part that is independent of the temperature and is treated implicitly, and another

part that explicitly depends on T and is proportional to γ, that is treated explicitly in the

same way as the Coriolis term, σΩu× ẑ. This scheme works well for a weak dependency of

viscosity on temperature and the set of Prandtl numbers considered in our study. However,
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it is not stable for stronger viscosity dependencies on temperature or infinite Prandtl number

(see [35] for further details).

We have studied temperature-dependent viscosity effects by setting γ equal to the values

corresponding to the various glycerine concentrations considered. Fixing σ = 100 and

Ra = 9× 104, we tested this effect with and without centrifugal buoyancy, i.e. with Fr = 0

and Fr corresponding to various glycerine mixtures. We found that the relative differences in

the horizontally averaged Nusselt number at either the bottom or top endwall obtained with

constant viscosity (γ = 0) and with temperature-dependent viscosity are less than 0.2%.

Moreover, in all of the cases tested, the relative differences between the temperature fields

at the point (r, θ, z) = (3.2, 0, 0) are below 5%. Even at the largest Fr , the temperature-

dependent viscosity case does not produce significant changes in the solution with respect

to the case of constant viscosity. The same was observed at larger Ra = 105. These results

are as to be expected given that for the parameter regimes used, α∆T < 10−3, as noted

earlier. Hence, since the effects of temperature-dependent viscosity are negligible and yet

quite expensive to incorporate computationally, we have keep the viscosity constant for the

result in the main body of this paper.
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CHAPTER 4

Discussion

This thesis addresses the numerical analysis of several convection problems through spectral
techniques. A first problem involves a viscosity which strongly depends on temperature in the
infinite Prandtl number limit, in a 2D domain in the presence of the O(2) symmetry. We propose
a numerical scheme in order to solve the time-dependent problem in this context. A second prob-
lem involves a 3D domain in a cylindrical geometry, and here we consider the dynamics of a fluid
in the presence of rotation with viscosity weakly dependent on temperature and large Prandtl
number.

This chapter extends the discussion regarding technical details about numerical aspects as
well as the description of solutions that have not been addressed before.

4.1. Convection problem with viscosity strongly dependent on
temperature (2D)

4.1.1. Numerical Methods

Stationary solutions and the spatial discretization

We now provide details on the numerical computation of stationary solution to equations
(1.1)-(1.3). For this purpose, we approximate the unknown fields by using a collocation method
with expansions that consider Chebyshev polynomials along the vertical direction and Fourier
modes along the horizontal coordinate. Chebyshev polynomials are eigenfunctions of a singular
Sturm Liouville problem. For this reason they form a complete basis of a Hilbert space and are
suitable for approaching functions with no a priori restrictions in the boundary conditions [15].
In the horizontal direction we use Fourier modes, which are convenient because they verify the
periodic boundary conditions present in the problem.

Our Fourier expansions are linked to the discrete Fourier transform. These are the coefficients
{ũj} with j = 0, . . . , L− 1 in the expression:

u(xj) =
L−1∑

l=0

ũje
ilxj , j = 0, . . . , L− 1, (4.1)

where we consider the uniform grid xj = 2πj/L, j = 0, . . . , L − 1. The expression (4.1) is not
a good interpolant for the function u(xj), since it is a complex function (the function u is real)
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Figure 4.1. The functions f(x) = <(eix(l−1)) with l = 14 (red circ) is indistinguish-
able from the same function with l = 14− L, where L = 16 (black asterisks) when
it is evaluated in certain xj .

outside the grid nodes xj and its real part oscillates very rapidly. According to [94] a true
interpolant that uses the coefficients of the discrete Fourier transform takes into account the
phenomenon of aliasing. Aliasing implies that one may add L to any of the complex-sinusoid
frequencies without changing the values in the xj points. In this way, this phenomenon allows
the replacement of eilxj with ei(l−1−L)xj , for L/2 + 1 ≤ l ≤ L, since these two functions are the
same at the nodes xj (see Figure 4.1). A good Fourier interpolant thus has the form:

u(xj) =

L/2∑

l=0

ũje
ilxj +

L−1∑

l=L/2+1

ũje
i(l−1−L)xj , j = 0, . . . , L− 1. (4.2)

This is a good interpolant for the function u(xj) because outside the grid points it is a real
function (for every function eilxj in the first summation there exist its complex conjugate in the
second summation) and it does not oscillate wildly. This interpolant is for 1D functions, while
the problem given by equations (1.1)-(1.3), together with the boundary conditions (1.4), is 2D.
Thus, in this case, the spatial expansions for an unknown perturbation field Y is:

Y (x, z) =

dL/2e∑

l=1

M−1∑

m=0

aYlmTm(z)ei(l−1)x +

L∑

l=dL/2e+1

M−1∑

m=0

aYlmTm(z)ei(l−1−L)x. (4.3)

In this notation, d·e represents the nearest integer towards infinity. Here L and M are the number
of nodes in the horizontal and vertical directions, respectively. In the horizontal direction, these
nodes are at the uniform grid xj , while in the vertical direction zj are at the collocation Gauss
Lobato points:

Uniform grid: xj = (j − 1)
2π

L
, j = 1, . . . , L;

Gauss–Lobatto: zi = cos

((
i− 1

M − 1
− 1

)
π

)
, i = 1, . . . ,M. (4.4)
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The coefficients of this expansion aYlm are complex numbers and are given by conjugated pairs
in such a way that, for instance, aY2m = aY ∗Lm. As the unknown functions Y are real, they admit
expansions with real functions and real unknowns. In order to obtain these functions, we take
into account Euler’s formula eilx = cos(lx) + i sin(lx), which is replaced in (4.3). In accordance
with these considerations, the following equations are obtained:

Y (x, z) =

dL/2e∑

l=1

M−1∑

m=0

bYlmTm(z) cos((l − 1)x) +

dL/2e∑

l=2

M−1∑

m=0

cYlmTm(z) sin((l − 1)x). (4.5)

The relations among the real and complex coefficients are:

bY1m = aY1m

bYlm = 2<(aYlm), cYlm = −2=(aYlm), for l = 2, . . . , dL/2e. (4.6)

Note that, strictly speaking, expansion (4.3) is a real function only if every coefficient in the first
summatory for l ≥ 2 has a conjugate pair in the second summatory. This implies that L must be
an odd number; thus, in what follows we restrict ourselves to odd L values.

In order to obtain the stationary solutions (satisfying the stationary version of equations (1.1)-
(1.3) and which are obtained by canceling the partial derivatives with respect to time) we use
a variant of the iterative Newton-Raphson methods. This method starts with an approximate
solution at step s = 0, to which is added a small correction in tilde:

(us + ũ, θs + θ̃, P s + P̃ ). (4.7)

These expressions are introduced into the system (1.1)-(1.3), and after canceling the nonlinear
terms in tilde, the following equations are obtained:

0 =∇ · ũ +∇ · us, (4.8)

0 =− ∂xP̃ − ∂xP s +
1

ν0
[L11(θs, usx, u

s
z) + L12(θs)ũx + L13(θs)ũz + L14(θs, usx, u

s
z)θ̃], (4.9)

0 =− ∂zP̃ − ∂zP s +
1

ν0
[L21(θs, usx, u

s
z) + L22(θs)ũx + L23(θs)ũz + (L24(θs, usx, u

s
z) + Ra)θ̃],

(4.10)

0 =ũ · ∇θs + us · ∇θ̃ + us · ∇θs −∆θ̃ −∆θs. (4.11)

Here, Lij (i = 1, 2, j = 1, 2, 3, 4) are linear operators with non-constant coefficients, which are
defined as follows:

L11(θ, ux, uz) =2∂θν(θ)∂xθ∂xux + ν(θ)∆ux + ∂θν(θ)∂zθ(∂xuz + ∂zux), (4.12)

L12(θ) =2∂θν(θ)∂xθ∂x + ν(θ)∆ + ∂θν(θ)∂zθ∂x, (4.13)

L13(θ) =∂θν(θ)∂zθ∂x, (4.14)

L14(θ, ux, uz) =2∂θν(θ)∂xux∂x + 2∂2
θθν(θ)∂xθ∂xux + ∂θν(θ)∆ux

+ (∂xuz + ∂zux)(∂θν(θ)∂z + ∂2
θθν(θ)∂zθ), (4.15)

L21(θ, ux, uz) =2∂θν(θ)∂zθ∂zuz + ν(θ)∆uz + ∂θν(θ)∂xθ(∂zux + ∂xuz), (4.16)

L22(θ) =∂θν(θ)∂xθ∂z, (4.17)

L23(θ) =2∂θν(θ)∂zθ∂z + ν(θ)∆ + ∂θν(θ)∂xθ∂z, (4.18)

L24(θ, ux, uz) =2∂θν(θ)∂zuz∂z + 2∂θθν(θ)∂zθ∂zuz + ∂θν(θ)∆uz

+ (∂zux + ∂xuz)(∂θν(θ)∂x + ∂θθν(θ)∂xθ). (4.19)
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The unknown fields ũ, P̃ , θ̃ are found by solving the linear system with the boundary conditions
(1.4), and the new approximate solution s+ 1 is set to

us+1 = us + ũ, θs+1 = θs + θ̃, P s+1 = P s + P̃ .

The whole procedure is repeated for s+ 1 until a convergence criterion is fulfilled.

(a) (b) (c)
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Figure 4.2. Pressure field for a stationary solution obtained with the “smooth”
arctangent viscosity law (1.7) using b = 10, a = 0.1 with Ra = 1300 and Γ =
3.4; a) Shows the pressure obtained without replacing ∂2

zzuz by −∂2
xzux in the

equation (4.10); b) Shows the pressure replacing ∂2
zzuz by −∂2

xzux in the equation
(4.10) without using SVD; c) Shows the pressure replacing ∂2

zzuz by −∂2
xzux in

the equation (4.10) using SVD; d) Shows a comparison of previous cases in the
boundary z = 1.

At each step, after replacing the expression (4.5) in this set of equations, we obtain a the
linear system

AX = b, (4.20)

where X contains the coefficients of the expansion (4.5) of the unknown fields. Although (4.3) is
correct and provides good results, we do not employ it in this work because it involves complex
functions and complex unknowns aYlm, eventually leading to the inversion of complex matrices
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which computationally are more costly than real matrices. We have verified that in our prob-
lem the time taken to solve the linear system (4.20) increases by a factor of three when it is
complex rather than when it is real. The resulting system is evaluated at the collocation points
according to the rules given in Section 3.1. This procedure has been successfully performed in
[54, 57, 83, 90]; however, in our setup, results are improved if, for the equation (4.10) imposed
at the upper boundary, the continuity equation is assumed and the term ∂2

zzuz is replaced by
−∂xzux. According to the method discussed in the references [54, 57, 83, 90], this equation is
imposed at the collocation points i = M, j = 1, . . . , L. We fix the constant by removing equation
(4.10) on node i = 2, j = 1, which is used to fix the additive arbitrary constant for the pres-
sure. This is done by adding the equation bP10 = 0 at this point. Fixing the constant for the
pressure field determines the linear system (4.20), which otherwise is undetermined. However,
we have observed that in problems with viscosity strongly dependent on temperature, as in the
case of arctangent viscosity laws, this method gives rise to inaccuracies in the pressure field,
which are detailed below. Figure 4.2(a) and the blue line in Figure 4.2(d) show the effects of
such replacement in a stationary solution obtained for the “smooth” viscosity law at parameters
b = 10, a = 0.1 with Ra = 1300 and Γ = 3.4. The inaccuracies are mainly observed at the upper
boundary. Figure 4.2(a) and 4.2(b) compare the effect with/without replacing ∂2

zzuz by −∂2
xzux.

The difference is best seen in Figure 4.2(d). The direct application of the methodology reported
in references [54, 57, 83, 90] introduces weakly oscillating structures on the pressure field, and
these diminish with the alternative method, the output of which is displayed in Figure 4.2(b) and
by the green line in Figure 4.2(d).

We have observed that the positions at which the oscillations appear are directly related to the
position in which equation (4.10) is substituted by the equation which fixes the arbitrary additive
constant in the pressure field. As previously noted, this step is necessary to obtain a determined
system in (4.20), but on the other hand, as we note here, this method may cause oscillations in the
pressure field. In order to overcome this drawback, instead of fixing the pressure constant, we opt
for computing a pseudo-inverse of the matrix A by using the singular value decomposition (SVD).
Let A = UΣV ∗ be the singular value decomposition of A; Σ being a rectangular diagonal matrix
with diagonal entries that are the singular values of A in decreasing order, and unitary matrices
U and V . From this decomposition, the pseudo-inverse is V Σ+U∗. Here U∗ is the conjugate
transpose of U and Σ+ is the pseudoinverse of a diagonal matrix, i.e. it takes the reciprocal of
each non-zero element on the diagonal, and transposes the resulting matrix. Finding the solution
of the system (4.20) in this way eliminates spurious oscillations of the pressure field (see Figure
4.2(c) and the red line in Figure 4.2(d)). Computationally, however this is much more expensive
than solving the determined linear system (4.20) with standard MATLAB techniques such as the
command A\b, which optimizes the solution of the linear system by choosing the most appropiate
method according to the structure of matrix A (see MATLAB manual). For this reason, our final
choice uses a combination of both methods. The iterative procedure is implemented by fixing the
constant for pressure, and once the tolerance is attained one extra iteration is performed using
the pseudo-inverse matrix.

Linear Stability

Completing the description of the stationary solutions found at different values of the param-
eter space requires analysis of their stability properties. Time-dependent regimes will then be
explored in the regions in which unstable branches emerge.
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The stability of stationary states, ub, θb, P b, is analyzed by adding a perturbation to them as
follows:

u(x, z, t) =ub(x, z) + ũ(x, z)eλt,

θ(x, z, t) =θb(x, z) + θ̃(x, z)eλt,

P (x, z, t) =P b(x, z) + P̃ (x, z)eλt. (4.21)

The expressions are introduced into the equations (1.1)-(1.3), and after dropping the nonlinear
terms the linearized equations are obtained:

0 =∇ · ũ (4.22)

0 =− ∂xP̃ +
1

ν0
[L12(θb)ũx + L13(θb)ũz + L14(θb, ubx, u

b
z)θ̃] (4.23)

0 =− ∂zP̃ +
1

ν0
[L22(θb)ũx + L23(θb)ũz + (L24(θb, ubx, u

b
z) + Ra)θ̃] (4.24)

0 =ũ · ∇θb + ub · ∇θ̃ + ub · ∇θb −∆θ̃ + λθ̃, (4.25)

where the operators Lij are the same as those defined in (4.12)-(4.19). Together with their
boundary conditions, equations (4.22)-(4.25) define a generalized eigenvalue problem. The sign
in the real part of the eigenvalue λ determines the stability of the solution: if it is negative, the
perturbation decays and the stationary solution is stable, while if it is positive the perturbation
grows over time and the stationary solution is unstable.

Any unknown field Y in the generalized eigenvalue problem (4.22)-(4.25) is approached by
means of a spectral method according to the expansion given in (4.5). The eigenvalue problem is
thus transformed into one of the form:

Aw = λBw (4.26)

in which w contains the coefficients of the eigenfunction and λ is the eigenvalue. The matrices A
and B are expressed as follows:

A =

(
K C

ĈT 0

)
; B =

(
M 0
0 0

)
, (4.27)

where K and M are matrices of size n̄ × n̄ and C and Ĉ are n̄ × m̄ matrices with n̄ > m̄. Here
n̄ = 3× L×M and m̄ = L×M.

In this section we explain in detail some transformations that we apply in order to solve this
generalized eigenvalue problem efficiently from the computational point of view. Our procedure
is taken from [82] and has been adapted to our setting. The eigenvalues of the problem (4.26)
can be infinite, because B is singular and this prevents us from employing the eigs subroutine of
MATLAB that uses the Arnoldi for computing just a reduced number of eigenvalues, which are
those of interest in our problem. In order to overcome this difficulty, in the work [82] the use of
a modified Cayley transformation is proposed, which preconditions the eigenvalue problem and
transforms it into another one with all its eigenvalues finite.

The transformation is performed in such a way that an infinite eigenvalue of the original
problem corresponds to a concrete and known finite eigenvalue for the new eigenvalue problem.
Denote by λi, i = 1, . . . , r̄, the r̄ finite eigenvalues of (4.26) and by σ(A,B) the set of these
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eigenvalues. We consider the following direct extension of the Cayley transform. For α1, α2 ∈ R
with α2 < α1 < 0 and α1 6∈ σ(A,B), consider

(A− α2B)w = µ(A− α1B)w. (4.28)

It is not difficult to show that the eigenvalues of this problem are given by

µi =
λi − α2

λi − α1
, i = 1, . . . , r̄,

µi = 1, i = r̄ + 1, . . . , n̄+ m̄,

(4.29)

in which, the eigenvalue equal to 1, of multiplicity n̄+ m̄− r̄, arises from the infinite eigenvalue
of (4.26). For λ ∈ C, the equation

µ = C(λ) =
λ− α2

λ− α1
(4.30)

represents a conformal transformation between the λ and µ planes.

We then introduce the following eigenvalue problem

Âw = µB̂w, (4.31)

where

Â =

(
K − α2 α3C

α3Ĉ
T 0

)
, B̂ =

(
K − α1M C

ĈT 0

)
, (4.32)

with α3 6∈ {C(λ)}r̄1. Thus, the algorithm for solving the eigenvalue problem (4.26) is as follows:
first we solve the system ÂX = B̂. After computing X, the Arnoldi method (MATLAB function
eigs) is used for calculating s eigenvalues of X with the largest magnitude: µi, i = 1 . . . , s. If the
number of these eigenvalues with |µi| < 1 is zero, α2 is increased (if α2 > α1 the values of α1,
α2 are exchanged) we define the matrices Â and B̂ again and the process is repeated. Finally
the λi, i = 1, . . . , s̄ are calculated using (4.30). We take as starting values α3 = 0, α2 = −6 and
α1 = −0.1.

As reported in [82], this procedure accelerates enormously the calculation of the generalized
eigenvalue problem with respect to the direct use of the standard MATLAB subroutine eig, and
we use it to produce the bifurcation diagrams reported in Sections 3.1, 3.2 and 3.3.

Time Evolution

We provide details on the numerical computation of time dependent solutions that complete
the information given in the articles. First, we explain and compare different existing approaches
through a simple example.

In Section 3.1, semi-implicit numerical methods are presented to compute the time-dependent
solutions that appear in Sections 3.2 and 3.3. The correct performance of these methods for
convection problems has been proven in several contexts and works, as reported in Section 3.1.
In this work, given that it is rather illustrative, we discuss the performance of these methods in
a simple, non-linear and stiff problem, the forced Van der Pol oscillator, which is given by

∂x

∂t
= −y,

ε
∂y

∂t
= x−

(
y3

3
− y
)

= x+ y − y3

3
. (4.33)
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The limit case ε = 0 corresponds to the unforced Van der Pol problem. This limit is a simple
example of a differential algebraic equation (DAE) [52]. DAEs have the general form:

M(t,x)∂tx = f(t,x), (4.34)

where the matrix M(t, x) is singular. For instance, for the Van der Por problem, the matrix M
has the form:

M =

(
1 0
0 ε

)
, (4.35)

which is singular in the limit ε = 0.

The 2D convection problem with viscosity strongly dependent on temperature and infinite
Prandtl number, studied in Sections 3.1, 3.2 and 3.3 is also a DAE, as its governing equations:

∇ · u = 0, (4.36)

0 = Raθ~e3 −∇P + div

(
ν(θ)

ν0
(∇u + (∇u)T )

)
, (4.37)

∂tθ + u · ∇θ = ∆θ, (4.38)

are related to the expression (4.34), in which the matrix M has the block-form:

M =




0 0 0
0 0 0
0 1 0


 being ∂tx =




∂tu
∂tθ
∂tP


 . (4.39)

We discuss the performance of several multistep methods which are a good approach for
addressing DAE and stiff problems [51, 52]. For computing the solution in a future time n + 1,
these methods make use of the solution at several previous steps n, n − 1, etc. In particular we
use several backward differentiation formulas (BDF). BDF are a family of implicit schemes for
which we explore some semi-implicit approaches.

1. Implicit scheme. This is used as the reference method for approaching the problem:

M(tn+1,x
n+1)∂tx

n+1 = f(tn+1,x
n+1). (4.40)

Our scheme uses a third order backward differentiation formula for evaluating the time
derivative ∂tx

n+1. This is done by interpolating the field at time xn+1 with a third order
Lagrange polynomial, which is then derived. The explicit expression for the derivatives in
the fixed time step case is:

∂tx
n+1 =

11xn+1 − 18xn + 9xn−1 − 2xn−2

6∆t
. (4.41)

In accordance with this approach, the Van der Por problem is solved with the scheme:

11xn+1 − 18xn + 9xn−1 − 2xn−2

6∆t
= −yn+1,

ε
11yn+1 − 18yn + 9yn−1 − 2yn−2

6∆t
= xn+1 + yn+1 − (yn+1)3

3
, (4.42)

and the convection problem is approached as:

0 = ∇ · un+1, (4.43)

0 = Raθn+1 ~e3 −∇Pn+1 + NL(θn+1,un+1), (4.44)

11θn+1 − 18θn + 9θn−1 − 2θn−2

6∆t
= −NL(θn+1,un+1) + ∆θn+1. (4.45)
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The results reported in Section 3.1 and in Figure 4.4 consider a different version of (4.45),
which is suitable for the use of variable time steps. Here, for simplicity, we only annotate
the fixed step scheme.

2. A semi-implicit scheme. We propose a semi-implicit approach to the fully implicit
problem, which assumes that the solution at time n + 1 is a small perturbation Z̃ of the
solution at time n; thus, zn+1 = zn + Z̃. Once linear equations for Z̃ are derived, the
equations are rewritten by replacing Z̃ = zn+1 − zn. Under this procedure, the time
discretization for the Van der Pol problem is:

11xn+1 − 18xn + 9xn−1 − 2xn−2

6∆t
= −yn+1,

ε
11yn+1 − 18yn + 9yn−1 − 2yn−2

6∆t
= xn+1 + yn+1 − (yn)3 − 2(yn)2yn+1

3
, (4.46)

and the nonlinear algebraic part of our convection problem is reduced to:

0 = ∇ · un+1, (4.47)

0 = −∂xPn+1 +
1

ν0
[L11(θn, unx, u

n
z ) + L12(θn)(un+1

x − unx) + L13(θn)(un+1
z − unz )

+ L14(θn, unx, u
n
z )(θn+1 − θn)], (4.48)

0 = −Pn +
1

ν0
[L21(θn, unx, u

n
z ) + L22(θn)(un+1

x − unx) + L23(θn)(un+1
z − unz )

+ (L24(θn, unx, u
n
z ) + Ra)(θn+1 − θn)], (4.49)

11θn+1 − 18θn + 9θn−1 − 2θn−2

6∆t
= (un+1 − un) · ∇θn + un · ∇(θn+1 − θn) (4.50)

+ un · ∇θn −∆θn+1, (4.51)

where Lij (i = 1, 2; j = 1, 2, 3, 4) are given as in (4.12)-(4.19).

3. Other semi-implicit schemes. A semi-implicit scheme was proposed by [58] in the
context of Navier-Stokes equation with constant viscosity and classical convection prob-
lems. This procedure considers a second order backward differentiation formula and a
semi-implicit strategy, as follows:

0 = ∇ · un+1 (4.52)

0 = Raθn+1~e3 −∆Pn+1 + 2NL(θn+1,un)−NL(θn+1,un−1) (4.53)

3θn+1 − 4θn + θn−1

2∆t
= −2NL(θn,un) + NL(θn−1,un−1) + ∆θn+1 (4.54)

We test this procedure only in the context of the 2D convection problem and do not produce
a version for testing it with the Van der Pol equation.

The results reported in Sections 3.1 and in Figure 4.4 consider a different version of (4.54),
which is suitable for the use of variable time steps. Here, for simplicity, we only annotate
the fixed step scheme.

4. IMEX-BDF methods (explicit method). Garćıa et al. [41] discuss the performance
of IMEX-BDF methods in classical convection problems (constant viscosity) in spherical
geometry with finite Prandtl number. Their schemes, which are shown to be efficient in
those setups, are tested here in the context of differential algebraic equations (explicit
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method). In order to obtain an explicit expression for these schemes we rewrite the DAEs
M(t,x)∂tx = f(t,x) in the form

L0∂tx = Lx + NL(x). (4.55)

Here L0 and L are linear operators that include the boundary conditions and NL(x) are
the nonlinear terms. These are treated explicitly in the IMEX-BDF formula, which are
related to the backward differentiation formula (BDF) [28, 52]. The unknown variable at
time n+ 1, xn+1 is expressed (for constant time step ∆t) as:

(
I − ∆t

γ0
L0L−1

)
xn+1 =

k−1∑

i=0

αi
γ0

xn−i +
k−1∑

i=0

βi∆t

γ0
L0NL(xn−i), (4.56)

where I is the identity operator and coefficients αi, βj and γ0, which do not depend on n,
are listed in [40] and in Table 4.1. If k ≥ 7, these methods are unstable and useless for time
integration. These operators for the Van der Pol problem are:

Table 4.1. Integration coefficients of BDF-extrapolation formula.

Coefficient
Order

1st 2st 3st 4st 5st 6st
(γ0 = 1) (γ0 = 3/2) (γ0 = 11/6) (γ0 = 25/12) (γ0 = 137/60) (γ0 = 147/60)

α0 1 2 3 4 5 6
α1 0 -1/2 -3/2 -3 -5 -15/2
α2 0 0 1/3 4/3 10/3 20/3
α3 0 0 0 -1/4 5/4 -15/4
α4 0 0 0 0 1/5 6/5
α5 0 0 0 0 0 -1/6
β0 1 2 3 4 5 6
β1 0 -1 -3 -6 -10 -15
β2 0 0 1 4 10 20
β3 0 0 0 -1 -5 -15
β4 0 0 0 0 1 6
β5 0 0 0 0 0 -1

L0 =

(
1 0
0 ε

)
, L =

(
0 −1
1 1

)
and NL(x) =

(
0
−y3

)
. (4.57)

Performance in the Van der Pol equation

Several tests for the Van der Pol equations are discussed using the fully implicit, the semi-
implicit (point 2) and the explicit method described above. The results are summarized in Figure
4.3. First we note that for ε = 0, only the fully implicit method works. The performance of the
remaining methods is then ranked in accordance with the smallness of ε at which the method still
works. Thus a method that works at small ε is one providing a good performance in a system
close to a DAE. Figure 4.3 confirms that the semi-implicit method that we propose is accurate
for ε near zero (ε = 0.01), much beyond IMEX-BDF methods that are found to fail for ε ≤ 0.01.
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Figure 4.3. Solutions of the Van der Pol problem and the evolutions of error versus
time. The relative error is calculated using the two norm and is benchmarked with
respect the fully implicit solution.
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Figure 4.4. Transitory regime of an initial data towards a stationary solution at
Γ = 3.4, Ra = 1300, with the “smooth” arctangent viscosity laws with parameter
β = 0.9, b = 10 and a = 0.01. The modification of the other semi-implicit scheme
is the replacement ∂zz

2uz by −∂2
xzux.

2D Convection with variable viscosity.

We now report on the performance of the schemes in the context of a viscosity law that follows
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the “smooth” arctangent laws:

ν(θ)

ν0
=C1 arctan(β(Raθµ− b)) + C2,

C1 =
(1− a)

arctan(−βb)− arctan(β(2500− b)) ,

C2 =1− C1 arctan(−bβ), (4.58)

with parameters β = 0.9, b = 10, a = 0.01, Γ = 3.4 and Ra = 1300. Figure 4.4 shows a
transitory regime of an initial data towards a stationary solution. These results confirm the good
performance of our semi-implicit scheme, as against other semi-implicit approaches such as those
discussed in point 3 above. Furthermore, it provides a better CPU performance that the fully
implicit methods, as discussed in Section 3.1.

4.1.2. Solutions

Next, we describe in more detail some of the solutions found in Sections 3.2 and 3.3, which are
obtained for two laws in which the viscosity changes abruptly with the temperature in a narrow
gap. These are the “smooth” and “sharp” arctangent laws.

For the “smooth” arctangent law we explore dependence of the shape and structure of the
plumes as a function of the parameters which contribute to it. These paremeters are as follows:
a, which measures the inverse of the viscosity contrast; b, which is related to the transition
temperature in the viscosity, and Ra, related to the heat transfer across the fluid layer and the
bifurcation parameter in our study. A summary of the observed geometries is shown in Figure
4.5:

(a) Spout shape (b) Mushroom shape (c) Balloon shape

Figure 4.5. Plume geometries.

Spout shape. This shape can be seen in Figure 4.5(a). Its visualization is achieved by
depicting an isotherm at θ1, which is the temperature at which the viscosity decays by 90%
from the maximum (ν = 0.1ν0). The temperature values above this threshold are shown in
black. This type of pattern is found at small viscosity contrasts (a = 0.1) and large b (large
transition temperature).

Mushroom shape. This type of plume is represented in Figure 4.5(b). Its visualization
depicts the isotherm θ1, which is the temperature at which the viscosity decays by 90%
from the maximum (ν = 0.1ν0). The structure of this plume has a thinner tail and a head
spread in a mushroom-like shape in the upper part of the fluid. This picture corresponds
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to small or intermedium b values and high Ra numbers. Moreover, this effect is observed
at intermediate values of b and Ra if the viscosity contrast increases by diminishing a.

Balloon shape. This geometry is found both for intermediate values of b with small Ra
and high values of b with increasing Ra number and a decreasing to 0.001.

Among the stationary solutions observed along the bifurcation branches obtained either from
the “smooth” law (see Section 3.2) or the “sharp” law (see Section 3.3), two of the most in-
teresting are the plumes that break symmetry along their vertical axis and the non-uniformly
distributed plumes. These solutions in the “smooth” arctangent law are closer to acquiring a
balloon shape, while in the “sharp” arctangent law they approach a mushroom shape. Figure
4.6 illustrates these findings for the smooth arctangent law; it shows two close plumes which are
asymmetric with respect to their vertical axis, and a third one which is displaced but maintains
its symmetry. For comparison purposes, a solution of uniformly distributed symmetric plumes is
displayed in Figure 4.6(b).

(a) Non-uniformly distributed plumes that break symmetry along their vertical axis. Stable solution.

(b) Uniformly distributed plumes with symmetry along their vertical axis. Unstable solution.

Figure 4.6. Shape of temperature plumes and velocity vector field. Solutions of
mode m = 3 in Γ = 6.9 and R = 1500 obtained using the “smooth” arctangent
viscosity law (1.7) with parameter b = 10 and a = 0.001.
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Figure 4.7. Representation of the horizontal velocity, ux, versus x for the stable
stationary solutions with non-uniformly distributed plumes that break symmetry
along their vertical axis.

Figure 4.8. Plumes of a stable (right) and an unstable (left) stationary solution at
Γ = 2.166 with Ra = 155.

None of the velocity field solutions along the stationary branches of the smooth arctangent
law develop a stagnant lid at the surface, even though the upper part corresponds to the region
with maximum viscosity. The velocity field in the upper surface sweeps a wide range of values, as
displayed in Figure 4.7. This result is dissimilar to that obtained from the “sharp” arctangent law,
as explained next, and to those reported in [108]. For the “sharp” arctangent law, the patterns
on the stationary branches in the bifurcation diagrams indicate the presence of stagnant lids in
the upper surface. Figure 4.8 illustrates solutions for this case which also break their symmetry
along their vertical axes. The pattern on the left with the plumes more prominent outwards is
unstable, while the pattern on the right with the plumes more prominent inwards is stable.

Coexisting with the stationary solutions of the sharp arctangent law, we find time-dependent
regimes that develop plate-like motion within a thin upper layer. Figure 4.9 outlines this evolu-
tion for the case of a periodic solution. The central panel shows the time at which a stagnant
lid is distinguished. The left and right panels show a time evolution in which the upper surface
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Figure 4.9. Outline of shape of plume and velocity vector field in “plate-like”
convective.

drifts alternately as a block towards the right and the left, respectively.

Both the time-dependent solutions found for smooth and sharp arctangent laws show the
influence of the symmetry present in the problem, such as travelling waves, limit cycles after a
Hopf bifurcation, oscillating solutions in the neighborhood of heteroclinic connections and chaotic
regimes. Some examples are reported in Figure 4.10. Figure 4.10(a) shows the projection of the
evolution of a travelling wave found after a Hopf bifurcation for Ra = 2210, Γ = 7.4 and a = 0.1
with the smooth arctangent law. Figure 4.10(b) shows a projection of a limit cycle, which should
be near a heteroclinic connection between two fixed points in which the solution remains for long
periods of time. This fact is illustrated by a dot shown at every time step; the accumulation of
such dots in the upper right and lower left corner confirm the presence of a fixed point in the
neighborhood.
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Figure 4.10. Time-dependent solution with the “smooth” arctangent laws (1.7) for
b = 10.

4.2. Confined rotating convection (3D)

4.2.1. Numerical Methods

We outline here the time and the spatial discretizations used in Section 3.4 for studying cen-
trifugal and viscosity effects in a 3D rotating convection problem. A full description is found in
[77].
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The governing equations for this problem are discretized using the second-order time-splitting
method proposed in [58], which constitutes an improvement on the projection scheme proposed
in [43] and implemented in [47] in finite element approximations. This method is similar to the
one described in point 3 in Section 4.1.1 within the time evolution subsection. The centrifugal
force is treated implicitly, and the Coriolis force is treated explicitly. While the scheme does not
work for viscosity with a strong dependence on temperature, it does so in the weakly dependent
regime on which we focus here. The viscous term is expanded in a part that is independent of
the temperature and is treated implicitly, while another part, that explicitly depends on T and
is proportional to γ, is treated explicitly in the same way as the Coriolis term.

A complete step in the time evolution consists of a predictor step for pressure and velocity
that determine preliminary values, which are then amended in a correction step. First, we
obtain a temperature from a Helmholtz-type problem where the nonlinear term in velocity and
temperature are treated explicitly:

(
∆− 3

2∆t

)
θn+1 = −2NL(θn,un) + NL(θn−1,un−1) + ∆θn+1 − −4θn + θn−1

2∆t
. (4.59)

The temperature value is inserted into the Navier-Stokes equations, and a preliminary pressure
pn+1 field is obtained from this equation and a continuity equation with a Neumann boundary
condition. A predictor velocity u field is calculated from the Navier-Stokes equation by including
the predictor pressure with the actual boundary conditions:

(
∆− 3

2σ∆t

)
u = σ−1∇pn+1 + σ−1

(
2NL(θn,un)−NL(θn−1,un−1)

)
+ 2Fn − Fn−1, (4.60)

where F is the gravitational and centrifugal force. In order to decouple the linear diffusion
terms in the momentum equations, according to [85] we use the combinations u+ = u + iv and
u− = u − iv. Finally, the corrected pressure and velocity fields are calculated with an explicit
evaluation of the final divergence-free velocity field.

The spatial discretization is related with the expansion (4.5) used for our 2D convection prob-
lem. We employ cylindrical coordinates (r, θ, z) and use a Chebyshev expansion in the radial and
vertical directions. Our polar coordinates on the plane (r, θ) are special in the sense that the
radial expansions are considered in r ∈ [−R,R] (where R is the radio of the cylinder), and the
appropriate parity of the origin is forced. This is implemented by Mercader and co-workers in
[77] following to Fornberg suggestions [37]. The problem is factorizable in the azimuthal direc-
tion and along this coordinate we use a Fourier expansion. The unknowns are the values of the
Chebyshev coefficients at each azimuthal wavenumber. With this spatial discretization, several
Helmholtz and Poisson equations must be solved for every Fourier mode k, which is done by using
a diagonalization technique in the two coordinates r and z. The imposed parity of the Fourier
modes guarantees the regularity conditions at the origin needed to solve the Helmholtz equations
[78].

This scheme works satisfactorily in the regime of parameters used in Section 3.4, i.e. for a
weak dependency of viscosity on temperature and the set of Prandtl numbers considered in our
study.
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4.2.2. Solutions

The effect of viscosity dependent on temperature

We extend the discussion on whether this dependence of viscosity on temperature is important
in the nature of and effect on the structure of the solutions for the 3D rotating cylinder. In
particular, in this problem we deal with glycerine water mixtures for which the Prandtl number
is very large and is fixed to 100. We have performed several tests cited in the appendix to the
Section 3.4 and which are summarized in Table 4.2. This table considers the Nusselt number,
which is given by

< Nu > (z) = −
∫ Γ

0

∫ 2π

0

∂T (r, θ, z)

∂z
rdrdθ. (4.61)

We then compare this function for the solution obtained with constant viscosity < Nu >0 and the
solutions with viscosity dependent on temperature < Nu >ε∆T . This is done by computing the
maximum error (infinite) norm of the difference. We also measure the error in the temperature
field T. For high Prandtl, the non-constant viscosity case presents no significant differences with
the constant viscosity case. This conclusion is maintained when increasing the Froude numbers.
Hence, since the effects of temperature-dependent viscosity are negligible, and yet quite expensive
to incorporate computationally, viscosity has been kept constant by setting γ = 0 in (1.12).

Table 4.2. Effects of viscosity dependent on temperature against the case of constant
viscosity (σ = 100, Ω = 625)

Fr = 0 Fr = 0.046 Fr = 0.2878 Fr = 0.901
Ra = 9× 104 ‖ < Nu >0 − < Nu >ε∆T ‖∞ 1.6945e-4 2.0822e-4 4.7338e-4 7.0671e-4

‖T 0 − Tε∆T ‖∞ 2.2451e-3 1.9283e-3 7.4668e-3 2.4801e-3
Ra = 9.8× 104 ‖ < Nu >0 − < Nu >ε∆T ‖∞ 3.8647e-4 3.9859e-4 2.7545e-4 1.8707e-4

‖T 0 − Tε∆T ‖∞ 1.4071e-4 2.1681e-3 1.8372e-3 8.5301e-3

The effect of the Prandtl number variation

The results reported in Section 3.4 correspond to Prandtl numbers obtained for each glycerine-
water mixture. At a fixed temperature, an increase in the mass concentration of glycerine in the
aqueous solution augments the kinematic viscosity, and thus the Prandtl number increases in
such a way that it reaches very large values (see Figure 1.6). In this section we discuss how, in
the range of parameters explored, from σ ∼ 100 onwards, the variation of the Prandtl number
has not influence on the results, and thus if this number had been fixed to 100 in the simulations,
we expect that we would have arrived at the same conclusions.

Ignoring the centrifugal buoyancy (Fr = 0) and taking Ω = 625, we examine the effects of
increasing the Prandtl number in the initial solution. We test several values of σ beyond the limit
σ = 100 and observe that the wall-modes structure is maintained for different σ, no significant
differences being found between the solutions. Figure 4.11(a) shows how in this setup the Nusselt
number varies with respect to the Prandtl number. The heat flux associated with the modulated
wall modes diminish when increasing σ until σ ∼ 100, and from this point on remains constant.
When the centrifugal buoyancy is taken into account, i.e. taking Fr 6= 0, there is no change the
conclusion. Figure 4.11(b) shows how the Nu grows when σ is increased up to σ ∼ 100, and from
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Figure 4.11. Variation of the Nusselt number with Prandtl number for Ω = 625,
Ra = 9× 104, Γ = 4.

this point onwards also remains constant.

Our conclusion agrees with those in studies carried out by other authors. The non-rotating
experiments of [1], with Ra ∈ [3 × 107, 1011], suggest that the Nusselt only weakly decreases
with increasing Prandtl (they considered σ ∈ [4, 40]), and that Nu is independent of σ in the
large σ-regime for moderate Ra ∈ [105 − 109] (see [48, 97]). The same conclusions are reached in
numerical simulations by [111, 113].

Our tests are performed for Ra = 9 × 104, well above the critical Rayleigh when Fr = 0,
Rac ∼ 4× 104. We choose this Rayleigh number because despite being high, the Nusselt number
remains constant for different values of the Froude number and enables simple diagrams to be
made in the comparison, such as those in Figure 4.11. This Rayleigh number is the highest for
which this situation occurs.



CHAPTER 5

Conclusions

Finally, the conclusions of the contributions of this work are summarized as follows:

First, a spectral semi-implicit method is proposed to solve a convection problem in which
the equations are formulated in primitive variables, the viscosity strongly depends on tempera-
ture and the Prandtl number is infinity. The proposed scheme evaluates the time derivatives by
backwards differentiation formulas (BDFs), which are adapted for performance with a variable
time step. The solutions obtained from solving the fully implicit problem are compared with the
solutions obtained from the proposed semi-implicit method, and for the problem under study,
our semi-implicit method is shown to be accurate and provides a slightly faster performance than
the fully implicit scheme. We also show that other semi-implicit schemes, which provide a good
performance in classical convection problems with constant viscosity and finite Prandtl number,
do not succeed in our setup. Additionally, with the assistance of bifurcation techniques, we gain
insight into the stationary solutions displayed by the system and their stability limits, and this
analysis is performed for a further validation of the accuracy of the scheme approaching the time
evolution problem.

Finite element methods and finite volume methods have been proven to be successful for
reaching extremely large viscosity contrasts up to 1010 − 1020. These are the preferred methods
in the geophysical community for addressing problems in which viscosity depends on tempera-
ture. These limit are not improved with our numerical approach, since viscosity contrasts of 104

at most are explored. However our spectral scheme is later applied to viscosity laws in which
novel dynamical evolutions derived from the presence of symmetries are found. In these settings,
spectral methods may play a more effective role than other discretizations, since these latter
approaches may overlook solutions which are fundamentally related to the symmetry.

The proposed techniques are used to explore the solutions obtained with several viscosity
laws. The results obtained are as the follows:

Exponential law. The morphology of the plume is described and compared with others
obtained in the literature. Stable stationary solutions become unstable through a Hopf
bifurcation, and the time-dependent regime is solved by the proposed spectral techniques.
The time-dependent solutions found for the exponential viscosity law show no evidence of
influence on the symmetry.
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“Smooth” arctangent law. We successfully apply the above scheme to the study of a
convection problem in which viscosity depends on temperature in a different way. We as-
sume that it experiences a transition in a temperature gap, which in a first step is not very
sharp. This is done by considering a smooth arctangent law. Assisted by bifurcation tech-
niques, we gain insight into the possible stationary solutions satisfied by the basic equations
exploring the bifurcations, both for a fixed Ra number as a function of the aspect ratio, and
for bifurcations at fixed aspect ratios as a function of the Ra number. Our results report the
influence of the values taken by several parameters of the viscosity law on the morphology
of the plumes at a low aspect ratio. If the parameter controlling the temperature at which
the transition occurs, b, is large, plumes tend to be thicker and show spout-like shapes.
Increasing the Ra number induces their evolution towards balloon-shaped plumes, and this
effect is more pronounced for high viscosity contrasts (small a). Additionally, if b is small,
plumes are thinner, with their heads in the upper part of the fluid tending to spread in a
mushroom-like shape.

Among the stationary solutions obtained along the bifurcation branches, one of the more
interesting stable patterns consists of the non-uniformly distributed plumes that break sym-
metry along their vertical axis. We also find travelling waves, oscillating solutions in the
neighbourhood of heteroclinic connections and chaotic regimes characterized by “phase”
drifts along the horizontal direction. All these solutions are linked to the presence of the
SO(2) symmetry. No stagnant lid regime is observed in any of the physical conditions ana-
lyzed.

“Sharp” arctangent law. By means of bifurcation diagrams and time-dependent nu-
merical simulations, we find time-dependent convection regimes which are fundamentally
related to the presence of the symmetry. These are limit cycles and time periodic solutions.
We observe that during the evolution of the reported limit cycles the energy is abruptly
released through “bursts” during which plate-like convection is develops. We find time-
periodic solutions that have a similar plate-like dynamic with a smoother time evolution.
No plate-like dynamics have hitherto been observed in this type of convection problem.

These results provide convection examples of moving plates that coexist with subsurface
upwards and downwards meandering jets, but without a proper subduction. The findings
here suggest that the symmetry may play a role on the origin of the moving plates in the
Earth. These examples do not rule out the existence of subduction in the Earth, but can
be particularly illustrative for understanding convective styles prior to subduction.

Finally, we explore a rotating convection problem in aqueous glycerine mixtures, the results of
which confirm that large Prandtl number convection cannot ignore centrifugal effects considered
through the Fr number. The simulations at the largest Ra numbers explored show that the
structure and dynamics of the plumes emerging from the top and bottom endwall boundary
layers are significantly altered when Fr effects are included. At low Ra numbers, an increase in
the glycerine concentration produces the rotating precession frequency gain (in absolute values)
and eventually causes convection to evolve towards target patterns dominated by concentric rings.
For large Ra numbers, the wall modes are quenched and if Fr is large enough the wall modes
completely disappear. Bulk convection appears in most of the cylinder at large Ra. The effects
of glycerine viscosity dependence on temperature are negligible in the parameter range studied,
and the influence of the Prandtl number beyond σ = 100 remains invariable.
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5.1. Current and Future Research

Application of the spectral methods in magma conduits/chambers

According to the numerical methods developed to solve the time evolution of convection prob-
lems that appear in our previous papers, it should be possible to apply the spectral scheme to
realistic data of the upper mantle and thus arrive at novel solutions enabling us to better under-
stand aspects of magma conduits and chambers.

In petrological and volcanological concepts, the magma chamber/conduit is the place where
magmas reside, crystallize, mix, differentiate, melt the wall-rock and become contaminated. Since
magma chambers/conduits cannot be observed directly, scientific knowledge about them derives
from the interpretation of indirect evidence that include observation of erupted rocks and gases,
as well as geophysical data. Our attempts to deepen the knowledge of their behaviour will follow
the line of physical volcanology by numerical simulation. Our aim is to find results that may have
direct implications for models of eruption patterns and may help to predict or evaluate eruption
styles.

Effects of the Rayleigh transition number in the structure of the solutions for
the “sharp” arctangent law

In Section 3.3 we use the arctangent law given by (1.8) where the transition Rayleigh Rat
adjusts the temperature at which the transition occurs. The choice of a positive value for Rat
imposes that there exists a viscosity transition in the interior of a fluid layer even if Ra is very
large. In this study, we take Rat = 10. A natural continuation of this work is to answer the
question about how our solutions or their structure change when we increase the value of the
Rayleigh transition Rat > 10, because these choices should lead to thicker stagnant lids near to
the instability threshold. Do the plate-like dynamics depends on the size of the stagnant lid? Is
the drifting process towards the right or the left maintained when the stagnant lid increases its
thickness or does it disappear?

This problem is interesting because determining the impact of the different physical properties
on convection styles is an important goal of research into planetary interiors. Our focus has been
on examining the instabilities found in a 2D fluid in the presence of the O(2) symmetry, which
contemplates a phase transition similar to a melting-solidification processes in which only change
in the viscosity are considered. We wish to explore the limits in the parameter space for plate-
like motions, the limits for solutions that exhibit energy bursts and the limits for time-dependent
solutions that confirm a role for the symmetry.

Numerical scheme for the time evolution of convection with viscosity strongly
dependent on temperature in 3D domains

Developing numerical schemes capable of tackling rotating convection problems in which vis-
cosity strongly depends on temperature can provide insights into new dynamics and phenomenol-
ogy.

On the one hand, we intend to complete the work in Section 3.1 by employing the same
methods in a 3D domain, and on the other hand we will study the effect of viscosity strongly
dependent on temperature in the presence of rotation, which is the natural continuation of the
work in Section 3.4.





Conclusiones

Para terminar se resumen las contribuciones de este trabajo.

Primero, proponemos un método espectral semi-impĺıcito para resolver un problema de con-
vección en el cual las ecuaciones se formulan en variables primitivas, la viscosidad depende fuerte-
mente de la temperatura y el número de Prandtl es infinito. El esquema propuesto evalúa las
derivadas temporales mediante las fórmulas de diferenciación hacia atrás (BDFs), las cuales son
adaptadas para usarse con pasos de tiempo variable. Comparamos las soluciones obtenidas re-
solviendo el problema totalmente impĺıcito con las soluciones obtenidas a partir del método semi-
impĺıcito que hemos propuesto. Para el problema bajo estudio, nuestro método semi-impĺıcito
es preciso y tiene un rendimiento ligeramente más rápido que el esquema totalmente impĺıcito.
También mostramos que otros esquemas semi-impĺıcitos, que proporcionan un buen rendimiento
en los problemas de convección clásicos con viscosidad constante y número de Prandtl finito, no
tienen un buen funcionamiento con nuestra configuración. Además, realizando un análisis de las
soluciones mediante técnicas de bifurcación, nos hemos hecho una idea de las posibles soluciones
estacionarias y de cuales son sus ĺımites de estabilidad. Hemos utilizado este análisis para una
validación adicional de la exactitud del esquema que aborda el problema de evolución temporal.

Los métodos de elementos finitos y los métodos de volúmenes finitos han demostrado tener
éxito en los problemas de viscosidad variable alcanzando contrastes de viscosidad extremada-
mente grandes de hasta 1010 − 1020. Estos métodos son los preferidos en la comunidad geof́ısica
para tratar problemas en los que la viscosidad depende de la temperatura. Con nuestro enfoque
numérico no hemos mejorado estos ĺımites, ya que sólo hemos explorado contrastes de viscosidad
de 104. Sin embargo, nuestro esquema espectral se puede aplicar a otras leyes de viscosidad en-
contrando evoluciones dinámicas derivadas de la presencia de simetŕıas. Con esta configuración,
los métodos espectrales pueden jugar un mejor papel que otras discretizaciones, las cuales pueden
pasar por alto soluciones fundamentalmente relacionadas con la simetŕıa.

Para explorar las soluciones obtenidas con varias leyes de viscosidad usamos las técnicas
propuestas. Los resultados obtenidos son los siguientes:

Ley Exponencial. Describimos la morfoloǵıa de la pluma y la comparamos con otras
obtenidas en la literatura. Existen soluciones estacionarias estables que vuelven inestables
a través de una bifurcación Hopf. El régimen temporal es resuelto mediante las técnicas
espectrales propuestas. Las soluciones dependientes del tiempo que encontramos con la ley
exponencial no muestran ninguna evidencia de la influencia de la simetŕıa.

Ley arcotangente “suave”. Hemos aplicado con éxito el esquema propuesto en el estu-
dio de un problema de convección en el que la viscosidad depende de la temperatura de un
modo diferente al caso anterior. Ahora hemos considerado que la viscosidad experimenta
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una transición “relativamente brusca” en un intervalo de temperatura pequeño mediante
una ley arcotangente suave. Analizando las soluciones mediante técnicas de bifurcación,
nos hacemos una idea de las posibles soluciones estacionarias que satisfacen las ecuaciones
básicas. Hemos explorado las bifurcaciones tanto para un número Ra fijo en función de
la relación de aspecto como para una relación de aspecto fija en función del número de
Rayleigh Ra. Nuestros resultados muestran la influencia de los valores tomados por varios
parámetros en la ley viscosidad sobre la morfoloǵıa de las plumas para una relación de
aspecto baja. Si el parámetro que controla la temperatura a la que se produce la transición,
b, es grande, las plumas tienden a ser más gruesas y muestran forma de protuberancia
(“spout”). Aumentar Ra induce su evolución hacia plumas en forma de globo, y este efecto
es más pronunciado en los contrastes de viscosidad alta (pequeño a) . Además, si b es
pequeño, las plumas son más delgadas y sus cabezas tienden a extenderse, por la parte
superior del fluido, adoptando forma de seta.

Entre las soluciones estacionarias obtenidas sobre las ramas de bifurcación, uno de los
patrones estables más interesantes consiste en plumas no uniformemente distribuidas que
rompen la simetŕıa a lo largo de su eje vertical. También encontramos ondas viajeras,
soluciones oscilatorias en las vecindades de conexiones heterocĺınicas y reǵımenes caóticos
caracterizados por “drifts” a lo largo de la dirección horizontal. Todas estas soluciones
están vinculadas a la presencia de la simetŕıa SO(2). No observamos ningún régimen de
capa estancada para ninguna de las condiciones f́ısicas analizadas.

Ley arcotangente “brusca”. Por medio de diagramas de bifurcación y simulaciones
numéricas de evolución temporal hemos encontrado reǵımenes de convección que depen-
den del tiempo fundamentalmente relacionadas con la presencia de la simetŕıa. Estos son
ciclos ĺımite y soluciones temporales periódicas. Observamos que durante la evolución de
los ciclos ĺımites encontrados la enerǵıa se libera bruscamente a través de “explosiones”
durante las cuales se desarrolla convección en forma de placa móvil (hacia la derecha o la
izquierda) que alterna en el tiempo con convección que desarrolla un placa superficial es-
tancada. Hemos encontrado soluciones en tiempo periódicas que tienen una forma de placa
dinámica similar a las anteriores pero con una evolución temporal más suave. En este tipo
de problema no se hab́ıa observado hasta ahora convección que desarrollara una placa móvil.

Estos resultados proporcionan ejemplos de convección con placas móviles que coexisten con
corrientes sub-superficiales que serpentean ondulantes hacia arriba y hacia abajo, pero sin
ser propiamente una subducción. Los resultados sugieren que la simetŕıa puede jugar un
papel importante en el origen del movimiento de las placas en la Tierra. Estos ejemplos
no descartan la existencia de subducción, pero pueden ser particularmente ilustrativos para
entender estilos convectivos antes de la subducción.

Finalmente, en el problema de la convección con rotación, nuestros resultados confirman que
para un número de Prandtl elevado no se puede ignorar la influencia del número de Froude en
la convección. Hemos observado que incluso para los números de Ra más altos considerados el
número de Fr afecta de manera significativa a la estructura y a la dinámica de las plumas que
surgen en la frontera del cilindro. Para bajo Ra aumentando la concentración de glicerina, se
produce el aumento de la frecuencia de precesión de rotación (en valores absolutos) y, finalmente,
la convección evoluciona hacia modos dominados por anillos concéntricos. Para Ra grandes los
modos de pared se debilitan y si el Fr es lo suficientemente grande los modos de pared desaparecen
por completo. La convección de la celda completa (bulk) aparece para elevado Ra. Los efectos de
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la dependencia de la viscosidad con la temperatura son insignificantes en el rango de parámetros
estudiado y más allá de σ = 100 la influencia del número de Prandtl no vaŕıa.

Trabajo actual y futuro

Aplicaciones de los métodos espectrales en chimeneas volcánicas y cámaras de
magma

Siguiendo los métodos numéricos desarrollados para resolver la evolución temporal de los pro-
blemas de convección que aparecen en nuestros trabajos anteriores, debeŕıa ser capaz de aplicar
el esquema espectral a datos realistas del manto superior y encontrar nuevas soluciones que nos
permitan entender mejor aspectos de las chimeneas volcánicas y de las cámaras de magma.

En términos petrológicos y vulcanológicos, la cámara/chimenea de magma es el lugar donde
el magma reside, se cristaliza, se mezcla, se diferencia y derrite la pared de roca. Como las
cámaras/chimeneas de magma no se pueden observar directamente, el conocimiento que tenemos
sobre ellos deriva de la interpretación de las evidencias indirectas. Estas evidencias incluyen la
observación de las rocas producidas por erupciones volcánicas, los gases, aśı como de los datos
geof́ısicos. Nuestros intentos de profundizar en el conocimiento de su comportamiento siguen la
ĺınea de la vulcanoloǵıa f́ısica mediante la simulación numérica. Nos gustaŕıa encontrar resultados
que pueden tener implicaciones directas sobre los modelos de los patrones de erupción y nos
ayuden a predecir o evaluar cómo se produce ésta.

Efectos del Rayleigh de transición en la estructura de la solución para la ley
arcotangente “brusca”

En la sección 3.3 usamos la ley arcotangente dada por (1.8) donde el Rayleigh de transición
Rat ajusta la temperatura en la cual la transición ocurre. La elección de un valor positivo para
Rat impone que exista una transición de la viscosidad en el interior de la capa del fluido aunque
Ra sea muy grande. A lo largo de esta memoria de tesis hemos tomamos Rat = 10. Una con-
tinuación natural de este trabajo es preguntarnos sobre cómo nuestras soluciones o su estructura
cambian cuando incrementamos el valor del Rayleigh de transición Rat > 10. Estas alternativas
podŕıan conducir a capas estancadas de mayor espesor cerca al umbral de inestabilidad. ¿Podŕıa
la movilidad de la placa verse afectada por su grosor? ¿Se mantienen o desaparecen los desliza-
mientos hacia la derecha o la izquierda cuando la capa estancada aumenta su espesor?

Este problema es interesante, porque un objetivo importante de la investigación sobre in-
teriores planetarios es buscar el impacto que las diferentes propiedades f́ısicas tienen sobre la
convección. Nos hemos centrado en examinar las inestabilidades que se desarrollan en un fluido
2D en presencia de la simetŕıa O(2), contemplando una transición de fase similar a un proceso de
fusión-solidificación en la que sólo se consideran cambios en la viscosidad. Queremos explorar el
espacio de parámetros para encontrar los ĺımites que preservan las placas móviles, o las soluciones
que liberan enerǵıa bruscamente o en definitiva permanezcan las soluciones en las que la simetŕıa
juega un papel.

Esquema numérico para la evolución temporal de la convección con viscosidad
fuertemente dependiente de la temperatura en dominios 3D

Desarrollar esquemas numéricos que puedan describir la evolución temporal de la convección
en la que la viscosidad depende fuertemente de la temperatura puede descubrirnos nuevas diná-
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micas y fenomenoloǵıas.

Por un lado, vamos a completar el trabajo de la sección 3.1 dando una implementación del
mismo esquema para un dominio 3D y, por otro lado, como continuación natural del trabajo
realizado en la Sección 3.4, se estudiará el efecto de incrementar la dependencia de la viscosidad
con la temperatura, en presencia de rotación.
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